Natural Evolution Strategies (NES)¶
- class pypop7.optimizers.nes.nes.NES(problem, options)¶
Natural Evolution Strategies (NES).
This is the abstract class for all NES classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand.
Note
NES is a family of principled population-based randomized search methods, which maximize the expected fitness along with (estimated) natural gradients. In this library, we have converted it to the minimization problem, in accordance with other modules.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of offspring/descendants, aka offspring population size (int),
’n_parents’ - number of parents/ancestors, aka parental population size (int),
’mean’ - initial (starting) point (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’sigma’ - initial global step-size, aka mutation strength (float).
- mean¶
initial (starting) point, aka mean of Gaussian search/sampling/mutation distribution.
- Type:
array_like
- n_individuals¶
number of offspring/descendants, aka offspring population size.
- Type:
int
- n_parents¶
number of parents/ancestors, aka parental population size.
- Type:
int
- sigma¶
global step-size, aka mutation strength (i.e., overall std of Gaussian search distribution).
- Type:
float
References
Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J., 2014. Natural evolution strategies. Journal of Machine Learning Research, 15(1), pp.949-980. https://jmlr.org/papers/v15/wierstra14a.html
Schaul, T., 2011. Studies in continuous black-box optimization. Doctoral Dissertation, Technische Universität München. https://people.idsia.ch/~schaul/publications/thesis.pdf
Yi, S., Wierstra, D., Schaul, T. and Schmidhuber, J., 2009, June. Stochastic search using the natural gradient. In Proceedings of International Conference on Machine Learning (pp. 1161-1168). https://dl.acm.org/doi/10.1145/1553374.1553522
Wierstra, D., Schaul, T., Peters, J. and Schmidhuber, J., 2008, June. Natural evolution strategies. In IEEE Congress on Evolutionary Computation (pp. 3381-3387). IEEE. https://ieeexplore.ieee.org/abstract/document/4631255