Direct Search (DS)¶
- class pypop7.optimizers.ds.ds.DS(problem, options)¶
Direct Search (DS).
This is the abstract class for all DS classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand.
Note
Most of modern DS adopt the population-based sampling strategy, no matter deterministic or stochastic.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’x’ - initial (starting) point (array_like),
’sigma’ - initial global step-size (float).
- sigma¶
final global step-size (changed during optimization).
- Type:
float
- x¶
initial (starting) point.
- Type:
array_like
References
Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. MIT Press. https://algorithmsbook.com/optimization/ (See Chapter 7: Direct Methods for details.)
Larson, J., Menickelly, M. and Wild, S.M., 2019. Derivative-free optimization methods. Acta Numerica, 28, pp.287-404. https://tinyurl.com/4sr2t63j
Audet, C. and Hare, W., 2017. Derivative-free and blackbox optimization. Berlin: Springer International Publishing. https://link.springer.com/book/10.1007/978-3-319-68913-5
Torczon, V., 1997. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7(1), pp.1-25. https://epubs.siam.org/doi/abs/10.1137/S1052623493250780
Wright, M.H. , 1996. Direct search methods: Once scorned, now respectable. Pitman Research Notes in Mathematics Series, pp.191-208. https://nyuscholars.nyu.edu/en/publications/direct-search-methods-once-scorned-now-respectable
Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. The Computer Journal, 7(4), pp.308-313. https://academic.oup.com/comjnl/article-abstract/7/4/308/354237
Hooke, R. and Jeeves, T.A., 1961. “Direct search” solution of numerical and statistical problems. Journal of the ACM, 8(2), pp.212-229. https://dl.acm.org/doi/10.1145/321062.321069
Fermi, E. and Metropolis N., 1952. Numerical solution of a minimum problem. Los Alamos Scientific Lab., Los Alamos, NM. https://www.osti.gov/servlets/purl/4377177