Generalized Pattern Search (GPS)¶
- class pypop7.optimizers.ds.gps.GPS(problem, options)¶
Generalized Pattern Search (GPS).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size (float, default: 1.0),
’x’ - initial (starting) point (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’gamma’ - decreasing factor of step-size (float, default: 0.5).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.ds.gps import GPS 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'x': 3*numpy.ones((2,)), 11... 'sigma': 0.1, 12... 'verbose_frequency': 500} 13>>> gps = GPS(problem, options) # initialize the optimizer class 14>>> results = gps.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"GPS: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17GPS: 5000, 0.6182686369768672
- gamma¶
decreasing factor of step-size.
- Type:
float
- sigma¶
final global step-size (changed during optimization).
- Type:
float
- x¶
initial (starting) point.
- Type:
array_like
References
Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. MIT Press. https://algorithmsbook.com/optimization/files/chapter-7.pdf (See Algorithm 7.6 (Page 106) for details.)
Regis, R.G., 2016. On the properties of positive spanning sets and positive bases. Optimization and Engineering, 17(1), pp.229-262. https://link.springer.com/article/10.1007/s11081-015-9286-x
Torczon, V., 1997. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7(1), pp.1-25. https://epubs.siam.org/doi/abs/10.1137/S1052623493250780