Source code for pypop7.optimizers.ds.gps

import numpy as np

from pypop7.optimizers.ds.ds import DS


[docs]class GPS(DS): """Generalized Pattern Search (GPS). .. note:: `"To converge to a local minimum, certain conditions must be met. The set of directions must be a positive spanning set, which means that we can construct any point using a nonnegative linear combination of the directions. A positive spanning set ensures that at least one of the directions is a descent direction from a location with a nonzero gradient."---[Kochenderfer&Wheeler, 2019] <https://algorithmsbook.com/optimization/files/chapter-7.pdf>`_ Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size (`float`, default: `1.0`), * 'x' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'gamma' - decreasing factor of step-size (`float`, default: `0.5`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.ds.gps import GPS >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'x': 3*numpy.ones((2,)), ... 'sigma': 0.1, ... 'verbose_frequency': 500} >>> gps = GPS(problem, options) # initialize the optimizer class >>> results = gps.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"GPS: {results['n_function_evaluations']}, {results['best_so_far_y']}") GPS: 5000, 0.6182686369768672 Attributes ---------- gamma : `float` decreasing factor of step-size. sigma : `float` final global step-size (changed during optimization). x : `array_like` initial (starting) point. References ---------- Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. MIT Press. https://algorithmsbook.com/optimization/files/chapter-7.pdf (See Algorithm 7.6 (Page 106) for details.) Regis, R.G., 2016. On the properties of positive spanning sets and positive bases. Optimization and Engineering, 17(1), pp.229-262. https://link.springer.com/article/10.1007/s11081-015-9286-x Torczon, V., 1997. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7(1), pp.1-25. https://epubs.siam.org/doi/abs/10.1137/S1052623493250780 """ def __init__(self, problem, options): DS.__init__(self, problem, options) self.gamma = options.get('gamma', 0.5) # decreasing factor of step-size (γ) def initialize(self, args=None, is_restart=False): x = self._initialize_x(is_restart) # initial point y = self._evaluate_fitness(x, args) # fitness # set random directions d = self.rng_initialization.standard_normal(size=(self.ndim_problem + 1, self.ndim_problem)) i_d = [i for i in range(d.shape[0])] # index of used directions return x, y, d, i_d def iterate(self, x=None, d=None, i_d=None, args=None): improved, best_so_far_y, fitness = False, self.best_so_far_y, [] for i in range(d.shape[0]): if self._check_terminations(): return i_d, fitness x = self.best_so_far_x + self.sigma*d[i_d[i]] # opportunistic y = self._evaluate_fitness(x, args) fitness.append(y) if y < best_so_far_y: improved = True i_d = [i_d[i]] + i_d[:i] + i_d[(i + 1):] # dynamic ordering break if not improved: self.sigma *= self.gamma # alpha return i_d, fitness def restart_reinitialize(self, args=None, x=None, y=None, d=None, i_d=None, fitness=None): self._fitness_list.append(self.best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._fitness_list) >= self.stagnation: is_restart_2 = (self._fitness_list[-self.stagnation] - self._fitness_list[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info(fitness, y) self.sigma = np.copy(self._sigma_bak) x, y, d, i_d = self.initialize(args, is_restart) self._fitness_list = [self.best_so_far_y] self._n_generations = 0 self._n_restart += 1 if self.verbose: print(' ....... *** restart *** .......') return x, y, d, i_d def optimize(self, fitness_function=None, args=None): fitness = DS.optimize(self, fitness_function) x, y, d, i_d = self.initialize(args) while True: self._print_verbose_info(fitness, y) i_d, y = self.iterate(x, d, i_d, args) if self._check_terminations(): break self._n_generations += 1 if self.is_restart: x, y, d, i_d = self.restart_reinitialize(args, x, y, d, i_d, fitness) return self._collect(fitness, y)