Genetic Algorithms (GA)

class, options)

Genetic Algorithm (GA).

This is the abstract class for all GA classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand.

  • problem (dict) –

    problem arguments with the following common settings (keys):
    • ’fitness_function’ - objective function to be minimized (func),

    • ’ndim_problem’ - number of dimensionality (int),

    • ’upper_boundary’ - upper boundary of search range (array_like),

    • ’lower_boundary’ - lower boundary of search range (array_like).

  • options (dict) –

    optimizer options with the following common settings (keys):
    • ’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),

    • ’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),

    • ’seed_rng’ - seed for random number generation needed to be explicitly set (int);

    and with the following particular setting (key):
    • ’n_individuals’ - population size (int, default: 100).


population size.




Whitley, D., 2019. Next generation genetic algorithms: A user’s guide and tutorial. In Handbook of Metaheuristics (pp. 245-274). Springer, Cham.

De Jong, K.A., 2006. Evolutionary computation: A unified approach. MIT Press.

Mitchell, M., 1998. An introduction to genetic algorithms. MIT Press.

Levine, D., 1997. Commentary—Genetic algorithms: A practitioner’s view. INFORMS Journal on Computing, 9(3), pp.256-259.

Goldberg, D.E., 1994. Genetic and evolutionary algorithms come of age. Communications of the ACM, 37(3), pp.113-120.

De Jong, K.A., 1993. Are genetic algorithms function optimizer?. Foundations of Genetic Algorithms, pp.5-17.

Forrest, S., 1993. Genetic algorithms: Principles of natural selection applied to computation. Science, 261(5123), pp.872-878.

Mitchell, M., Holland, J. and Forrest, S., 1993. When will a genetic algorithm outperform hill climbing. Advances in Neural Information Processing Systems (pp. 51-58).

Holland, J.H., 1992. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT press.

Holland, J.H., 1992. Genetic algorithms. Scientific American, 267(1), pp.66-73.

Goldberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

Goldberg, D.E. and Holland, J.H., 1988. Genetic algorithms and machine learning. Machine Learning, 3(2), pp.95-99.

Holland, J.H., 1973. Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), pp.88-105.

Holland, J.H., 1962. Outline for a logical theory of adaptive systems. Journal of the ACM, 9(3), pp.297-314.