Generalized Generation Gap with Parent-Centric Recombination (G3PCX)
- class pypop7.optimizers.ga.g3pcx.G3PCX(problem, options)[source]
Generalized Generation Gap with Parent-Centric Recombination (G3PCX).
Note
Originally G3PCX was proposed to scale up the efficiency of GA mainly by Deb, the recipient of IEEE Evolutionary Computation Pioneer Award 2018.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - population size (int, default: 100),
’n_parents’ - parent size (int, default: 3),
’n_offsprings’ - offspring size (int, default: 2).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.ga.g3pcx import G3PCX 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022} 10>>> g3pcx = G3PCX(problem, options) # initialize the optimizer class 11>>> results = g3pcx.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"G3PCX: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14G3PCX: 5000, 0.0
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- n_individuals
population size.
- Type:
int
- n_offsprings
offspring size.
- Type:
int
- n_parents
parent size.
- Type:
int
References
https://www.egr.msu.edu/~kdeb/codes/g3pcx/g3pcx.tar (See the original C source code.)
https://pymoo.org/algorithms/soo/g3pcx.html
Deb, K., Anand, A. and Joshi, D., 2002. A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 10(4), pp.371-395. https://direct.mit.edu/evco/article-abstract/10/4/371/1136/A-Computationally-Efficient-Evolutionary-Algorithm