GENetic ImplemenTOR (GENITOR)¶
- class pypop7.optimizers.ga.genitor.GENITOR(problem, options)¶
GENetic ImplemenTOR (GENITOR).
Note
This is a slightly modified version of GENITOR for continuous optimization. Originally GENITOR was proposed to solve challenging neuroevolution problems by Whitley, the recipient of IEEE Evolutionary Computation Pioneer Award 2022.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular setting (key):
’n_individuals’ - population size (int, default: 100),
’cv_prob’ - crossover probability (float, default: 0.5).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.ga.genitor import GENITOR 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022} 10>>> genitor = GENITOR(problem, options) # initialize the optimizer class 11>>> results = genitor.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"GENITOR: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14GENITOR: 5000, 0.004382445279905116
For its correctness checking of coding, the code-based repeatability report cannot be provided owing to the lack of its simulation environment.
- cv_prob¶
crossover probability.
- Type:
float
- n_individuals¶
population size.
- Type:
int
References
https://www.cs.colostate.edu/~genitor/
Whitley, D., Dominic, S., Das, R. and Anderson, C.W., 1993. Genetic reinforcement learning for neurocontrol problems. Machine Learning, 13, pp.259-284. https://link.springer.com/article/10.1023/A:1022674030396
Whitley, D., 1989, December. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In Proceedings of International Conference on Genetic Algorithms (pp. 116-121). https://dl.acm.org/doi/10.5555/93126.93169