Source code for pypop7.optimizers.ga.genitor

import numpy as np

from pypop7.optimizers.ga.ga import GA


[docs]class GENITOR(GA): """GENetic ImplemenTOR (GENITOR). .. note:: `"Selective pressure and population diversity should be controlled as directly as possible."---[Whitley, 1989] <https://dl.acm.org/doi/10.5555/93126.93169>`_ This is a *slightly modified* version of `GENITOR` for continuous optimization. Originally `GENITOR` was proposed to solve challenging `neuroevolution <https://www.nature.com/articles/s42256-018-0006-z>`_ problems by Whitley, `the recipient of IEEE Evolutionary Computation Pioneer Award 2022 <https://tinyurl.com/456as566>`_. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular setting (`key`): * 'n_individuals' - population size (`int`, default: `100`), * 'cv_prob' - crossover probability (`float`, default: `0.5`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.ga.genitor import GENITOR >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> genitor = GENITOR(problem, options) # initialize the optimizer class >>> results = genitor.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"GENITOR: {results['n_function_evaluations']}, {results['best_so_far_y']}") GENITOR: 5000, 0.004382445279905116 For its correctness checking of coding, the code-based repeatability report cannot be provided owing to the lack of its simulation environment. Attributes ---------- cv_prob : `float` crossover probability. n_individuals : `int` population size. References ---------- https://www.cs.colostate.edu/~genitor/ Whitley, D., Dominic, S., Das, R. and Anderson, C.W., 1993. Genetic reinforcement learning for neurocontrol problems. Machine Learning, 13, pp.259-284. https://link.springer.com/article/10.1023/A:1022674030396 Whitley, D., 1989, December. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In Proceedings of International Conference on Genetic Algorithms (pp. 116-121). https://dl.acm.org/doi/10.5555/93126.93169 """ def __init__(self, problem, options): GA.__init__(self, problem, options) self.cv_prob = options.get('cv_prob', 0.5) # crossover probability assert 0.0 <= self.cv_prob <= 1.0 _rank_prob = np.arange(self.n_individuals, 0, -1) - 1.0 self.rank_prob = _rank_prob/np.sum(_rank_prob) def initialize(self, args=None): x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary, size=(self.n_individuals, self.ndim_problem)) # population y = np.empty((self.n_individuals,)) # fitness cv_probs = self.cv_prob*np.ones((self.n_individuals,)) for i in range(self.n_individuals): if self._check_terminations(): break y[i] = self._evaluate_fitness(x[i], args) return x, y, cv_probs def iterate(self, x=None, y=None, cv_probs=None, args=None): order, xx, yy = np.argsort(y), None, None # use rank-based selection for two parents offspring = self.rng_optimization.choice(order, size=2, replace=False, p=self.rank_prob) if self.rng_optimization.random() < cv_probs[offspring[0]]: # crossover # use intermediate crossover (not one-point crossover proposed in the original paper) xx = (x[offspring[0]] + x[offspring[1]])/2.0 yy = self._evaluate_fitness(xx, args) if yy < y[order[-1]]: # to replace the worst individual x[order[-1]], y[order[-1]] = xx, yy cv_probs[offspring[0]] += 0.1 else: cv_probs[offspring[0]] -= 0.1 cv_probs[offspring[0]] = np.maximum(0.05, np.minimum(0.95, cv_probs[offspring[0]])) else: # mutation xx = np.copy(x[offspring[0]]) # offspring xx += self.rng_optimization.uniform(self.lower_boundary, self.upper_boundary)/10.0 yy = self._evaluate_fitness(xx, args) if yy < y[order[-1]]: # to replace the worst individual x[order[-1]], y[order[-1]] = xx, yy self._n_generations += 1 return x, yy, cv_probs def optimize(self, fitness_function=None, args=None): fitness = GA.optimize(self, fitness_function) x, y, cv_probs = self.initialize(args) yy = y # only for printing while not self._check_terminations(): self._print_verbose_info(fitness, yy) x, yy, cv_probs = self.iterate(x, y, cv_probs, args) return self._collect(fitness, yy)