Evolution Strategies (ES)¶
- class pypop7.optimizers.es.es.ES(problem, options)¶
Evolution Strategies (ES).
This is the abstract class for all ES classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand.
Note
ES are a well-established family of randomized population-based search algorithms, proposed by two German computer scientists Ingo Rechenberg and Hans-Paul Schwefel (two recipients of IEEE Evolutionary Computation Pioneer Award 2002). One key property of ES is adaptability of strategy parameters, which generally can significantly accelerate the (local) convergence rate. Recently, the theoretical foundation of its most representative (modern) version called CMA-ES has been well built on the Information-Geometric Optimization (IGO) framework via invariance principles (inspired by NES).
According to the latest Nature review, “the CMA-ES algorithm is widely regarded as the state of the art in numerical optimization”.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of offspring/descendants, aka offspring population size (int),
’n_parents’ - number of parents/ancestors, aka parental population size (int),
’mean’ - initial (starting) point (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’sigma’ - initial global step-size, aka mutation strength (float).
- mean¶
initial (starting) point, aka mean of Gaussian search/sampling/mutation distribution.
- Type:
array_like
- n_individuals¶
number of offspring/descendants, aka offspring population size.
- Type:
int
- n_parents¶
number of parents/ancestors, aka parental population size.
- Type:
int
- sigma¶
global step-size, aka mutation strength (i.e., overall std of Gaussian search distribution).
- Type:
float
References
https://homepages.fhv.at/hgb/downloads/ES-Is-Not-Gradient-Follower.pdf
Ollivier, Y., Arnold, L., Auger, A. and Hansen, N., 2017. Information-geometric optimization algorithms: A unifying picture via invariance principles. Journal of Machine Learning Research, 18(18), pp.1-65. https://www.jmlr.org/papers/v18/14-467.html
https://blog.otoro.net/2017/10/29/visual-evolution-strategies/
Hansen, N., Arnold, D.V. and Auger, A., 2015. Evolution strategies. In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44
Bäck, T., Foussette, C., & Krause, P. (2013). Contemporary evolution strategies. Berlin: Springer. https://link.springer.com/book/10.1007/978-3-642-40137-4
http://www.scholarpedia.org/article/Evolution_strategies
Beyer, H.G. and Schwefel, H.P., 2002. Evolution strategies–A comprehensive introduction. Natural Computing, 1(1), pp.3-52. https://link.springer.com/article/10.1023/A:1015059928466
Rechenberg, I., 2000. Case studies in evolutionary experimentation and computation. Computer Methods in Applied Mechanics and Engineering, 186(2-4), pp.125-140. https://www.sciencedirect.com/science/article/abs/pii/S0045782599003813
Rechenberg, I., 1989. Evolution strategy: Nature’s way of optimization. In Optimization: Methods and Applications, Possibilities and Limitations (pp. 106-126). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-83814-9_6
Schwefel, H.P., 1988. Collective intelligence in evolving systems. In Ecodynamics (pp. 95-100). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-73953-8_8
Schwefel, H.P., 1984. Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), pp.165-167. https://link.springer.com/article/10.1007/BF01876146
Rechenberg, I., 1984. The evolution strategy. A mathematical model of darwinian evolution. In Synergetics—from Microscopic to Macroscopic Order (pp. 122-132). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-69540-7_13
ESs:
- Limited Memory Covariance Matrix Adaptation (LMCMA)
- Mixture Model-based Evolution Strategy (MMES)
- Fast Covariance Matrix Adaptation Evolution Strategy (FCMAES)
- Diagonal Decoding Covariance Matrix Adaptation (DDCMA)
- Limited Memory Matrix Adaptation Evolution Strategy (LMMAES)
- Rank-M Evolution Strategy (RMES)
- Rank-One Evolution Strategy (R1ES)
- Projection-based Covariance Matrix Adaptation (VKDCMA)
- Linear Covariance Matrix Adaptation (VDCMA)
- Limited Memory Covariance Matrix Adaptation Evolution Strategy (LMCMAES)
- Fast Matrix Adaptation Evolution Strategy (FMAES)
- Matrix Adaptation Evolution Strategy (MAES)
- Cholesky-CMA-ES 2016 (CCMAES2016)
- (1+1)-Active-CMA-ES 2015 (OPOA2015)
- (1+1)-Active-CMA-ES 2010 (OPOA2010)
- Cholesky-CMA-ES 2009 (CCMAES2009)
- (1+1)-Cholesky-CMA-ES 2009 (OPOC2009)
- Separable Covariance Matrix Adaptation Evolution Strategy (SEPCMAES)
- (1+1)-Cholesky-CMA-ES 2006 (OPOC2006)
- Covariance Matrix Adaptation Evolution Strategy (CMAES)
- Self-Adaptation Matrix Adaptation Evolution Strategy (SAMAES)
- Self-Adaptation Evolution Strategy (SAES)
- Cumulative Step-size Adaptation Evolution Strategy (CSAES)
- Derandomized Self-Adaptation Evolution Strategy (DSAES)
- Schwefel’s Self-Adaptation Evolution Strategy (SSAES)
- Rechenberg’s (1+1)-Evolution Strategy (RES)