Limited Memory Matrix Adaptation Evolution Strategy (LMMAES)
- class pypop7.optimizers.es.lmmaes.LMMAES(problem, options)[source]
Limited-Memory Matrix Adaptation Evolution Strategy (LMMAES).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’]).
’n_evolution_paths’ - number of evolution paths (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)),
’c_s’ - learning rate of evolution path update (float, default: 2.0*options[‘n_individuals’]/problem[‘ndim_problem’]).
Examples
Use the black-box optimizer LMMAES to minimize the well-known test function Rosenbrock:
1>>> import numpy # engine for numerical computing 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.lmmaes import LMMAES 4>>> problem = {'fitness_function': rosenbrock, # to define problem arguments 5... 'ndim_problem': 200, 6... 'lower_boundary': -5.0*numpy.ones((200,)), 7... 'upper_boundary': 5.0*numpy.ones((200,))} 8>>> options = {'max_function_evaluations': 500000, # to set optimizer options 9... 'seed_rng': 0, 10... 'mean': 3.0*numpy.ones((200,)), 11... 'sigma': 3.0} # global step-size may need to be tuned for optimality 12>>> lmmaes = LMMAES(problem, options) # to initialize the optimizer class 13>>> results = lmmaes.optimize() # to run the optimization/evolution process 14>>> print(f"LMMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 15LMMAES: 500000, 78.4967
For its correctness checking of Python coding, please refer to this code-based repeatability report for all details. For pytest-based automatic testing, please see test_lmmaes.py.
- c_s
learning rate of evolution-path update (should > 0.0).
- Type:
float
- mean
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_evolution_paths
number of evolution paths (should > 1).
- Type:
int
- n_individuals
number of offspring, aka offspring population size.
- Type:
int
- n_parents
number of parents, aka parental population size.
- Type:
int
- sigma
final global step-size, aka mutation strength.
- Type:
float
References
Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019. Large scale black-box optimization by limited-memory matrix adaptation. IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358.
Please refer to the official Python version from Prof. Glasmachers: https://www.ini.rub.de/upload/editor/file/1604950981_dc3a4459a4160b48d51e/lmmaes.py