Self-Adaptation Evolution Strategy (SAES)¶
- class pypop7.optimizers.es.saes.SAES(problem, options)¶
Self-Adaptation Evolution Strategy (SAES).
Note
SAES adapts only the global step-size on-the-fly with a relatively small population, often resulting in slow (and even premature) convergence for large-scale black-box optimization (LSBBO), especially on ill-conditioned fitness landscape. Therefore, it is highly recommended to first attempt more advanced ES variants (e.g. LMCMA, LMMAES) for LSBBO. Here we include it only for benchmarking and theoretical purpose.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)),
’lr_sigma’ - learning rate of global step-size (float, default: 1.0/np.sqrt(2*problem[‘ndim_problem’])).
Examples
Use the optimizer SAES to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.saes import SAES 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'mean': 3*numpy.ones((2,)), 11... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 12>>> saes = SAES(problem, options) # initialize the optimizer class 13>>> results = saes.optimize() # run the optimization process 14>>> # return the number of function evaluations and best-so-far fitness 15>>> print(f"SAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 16SAES: 5000, 0.07968852575335955
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- lr_sigma¶
learning rate of global step-size.
- Type:
float
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- n_parents¶
number of parents, aka parental population size.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
References
Beyer, H.G., 2020, July. Design principles for matrix adaptation evolution strategies. In Proceedings of Annual Conference on Genetic and Evolutionary Computation Companion (pp. 682-700). ACM. https://dl.acm.org/doi/abs/10.1145/3377929.3389870
http://www.scholarpedia.org/article/Evolution_strategies
See its official Matlab/Octave version from Prof. Beyer: https://homepages.fhv.at/hgb/downloads/mu_mu_I_lambda-ES.oct