Fast Covariance Matrix Adaptation Evolution Strategy (FCMAES)¶
- class pypop7.optimizers.es.fcmaes.FCMAES(problem, options)¶
Fast Covariance Matrix Adaptation Evolution Strategy (FCMAES).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.fcmaes import FCMAES 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'mean': 3*numpy.ones((2,)), 11... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 12>>> fcmaes = FCMAES(problem, options) # initialize the optimizer class 13>>> results = fcmaes.optimize() # run the optimization process 14>>> # return the number of function evaluations and best-so-far fitness 15>>> print(f"FCMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 16FCMAES: 5000, 0.016679956606138215
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- n_parents¶
number of parents, aka parental population size.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
References
Li, Z., Zhang, Q., Lin, X. and Zhen, H.L., 2020. Fast covariance matrix adaptation for large-scale black-box optimization. IEEE Transactions on Cybernetics, 50(5), pp.2073-2083. https://ieeexplore.ieee.org/abstract/document/8533604
Li, Z. and Zhang, Q., 2016. What does the evolution path learn in CMA-ES?. In Parallel Problem Solving from Nature (pp. 751-760). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-45823-6_70