(1+1)-Cholesky-CMA-ES 2006 (OPOC2006)
- class pypop7.optimizers.es.opoc2006.OPOC2006(problem, options)[source]
(1+1)-Cholesky-CMA-ES 2006 (OPOC2006).
Note
To avoid the computationally expensive eigen-decomposition operation, OPOC2006 uses the Cholesky decomposition with a quadratic time complexity as an alternative. It is highly recommended to first attempt more advanced ES variants (e.g., LMCMA, LMMAES) for large-scale black-box optimization.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
Examples
Use the black-box optimizer OPOC2006 to minimize the well-known test function Rosenbrock:
1>>> import numpy # engine for numerical computing 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.opoc2006 import OPOC2006 4>>> problem = {'fitness_function': rosenbrock, # to define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5.0*numpy.ones((2,)), 7... 'upper_boundary': 5.0*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # to set optimizer options 9... 'seed_rng': 2022, 10... 'mean': 3*numpy.ones((2,)), 11... 'sigma': 3.0} # global step-size may need to be fine-tuned for better performance 12>>> opoc2006 = OPOC2006(problem, options) # to initialize the optimizer class 13>>> results = opoc2006.optimize() # to run the optimization/evolution process 14>>> print(f"OPOC2006: {results['n_function_evaluations']}, {results['best_so_far_y']}") 15OPOC2006: 5000, 8.9150e-17
For its correctness checking of Python coding, please refer to this code-based repeatability report for all details. For pytest-based automatic testing, please see test_opoc2006.py.
References
Igel, C., Suttorp, T. and Hansen, N., 2006, July. A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 453-460). ACM.