Derandomized Self-Adaptation Evolution Strategy (DSAES)¶
- class pypop7.optimizers.es.dsaes.DSAES(problem, options)¶
Derandomized Self-Adaptation Evolution Strategy (DSAES).
Note
DSAES adapts all the individual step-sizes on-the-fly with a relatively small population. The default setting (i.e., using a small population) may result in relatively fast (local) convergence, but with the risk of getting trapped in suboptima on multi-modal fitness landscape.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 10),
’lr_sigma’ - learning rate of global step-size self-adaptation (float, default: 1.0/3.0).
Examples
Use the optimizer DSAES to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.dsaes import DSAES 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'mean': 3*numpy.ones((2,)), 11... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 12>>> dsaes = DSAES(problem, options) # initialize the optimizer class 13>>> results = dsaes.optimize() # run the optimization process 14>>> # return the number of function evaluations and best-so-far fitness 15>>> print(f"DSAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 16DSAES: 5000, 0.04805047881994932
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- lr_sigma¶
learning rate of global step-size self-adaptation.
- Type:
float
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- sigma¶
initial global step-size, aka mutation strength.
- Type:
float
- _axis_sigmas¶
final individuals step-sizes from the elitist.
- Type:
array_like
References
Hansen, N., Arnold, D.V. and Auger, A., 2015. Evolution strategies. In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44
Ostermeier, A., Gawelczyk, A. and Hansen, N., 1994. A derandomized approach to self-adaptation of evolution strategies. Evolutionary Computation, 2(4), pp.369-380. https://direct.mit.edu/evco/article-abstract/2/4/369/1407/A-Derandomized-Approach-to-Self-Adaptation-of