Source code for pypop7.optimizers.es.dsaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES


[docs]class DSAES(ES): """Derandomized Self-Adaptation Evolution Strategy (DSAES). .. note:: `DSAES` adapts all the *individual* step-sizes on-the-fly with a *relatively small* population. The default setting (i.e., using a `small` population) may result in *relatively fast* (local) convergence, but perhaps with the risk of getting trapped in suboptima on multi-modal fitness landscape. Therefore, it is recommended to first attempt more advanced ES variants (e.g., `LMCMA`, `LMMAES`) for large-scale black-box optimization. Here we include `DSAES` mainly for *benchmarking* and *theoretical* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `10`), * 'lr_sigma' - learning rate of global step-size self-adaptation (`float`, default: `1.0/3.0`). Examples -------- Use the black-box optimizer `DSAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.dsaes import DSAES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 3.0} # global step-size may need to be tuned >>> dsaes = DSAES(problem, options) # to initialize the optimizer class >>> results = dsaes.optimize() # to run the optimization/evolution process >>> # to return the number of function evaluations and the best-so-far fitness >>> print(f"DSAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") DSAES: 5000, 1.9916050765897666e-07 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/2c8e89kj>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. lr_sigma : `float` learning rate of global step-size self-adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. sigma : `float` initial global step-size, aka mutation strength. _axis_sigmas : `array_like` final individuals step-sizes from the elitist. References ---------- Hansen, N., Arnold, D.V. and Auger, A., 2015. `Evolution strategies. <https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44>`_ In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg. Ostermeier, A., Gawelczyk, A. and Hansen, N., 1994. `A derandomized approach to self-adaptation of evolution strategies. <https://direct.mit.edu/evco/article-abstract/2/4/369/1407/A-Derandomized-Approach-to-Self-Adaptation-of>`_ Evolutionary Computation, 2(4), pp.369-380. """ def __init__(self, problem, options): if options.get('n_individuals') is None: options['n_individuals'] = 10 ES.__init__(self, problem, options) if self.lr_sigma is None: # learning rate of global step-size adaptation self.lr_sigma = 1.0/3.0 assert self.lr_sigma > 0, f'`self.lr_sigma` = {self.lr_sigma}, but should > 0.' self._axis_sigmas = None self._e_hnd = np.sqrt(2.0/np.pi) # E[|N(0,1)|]: expectation of half-normal distribution def initialize(self, is_restart=False): self._axis_sigmas = self._sigma_bak*np.ones((self.ndim_problem,)) x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution # set individual step-sizes for all offspring sigmas = np.ones((self.n_individuals, self.ndim_problem)) y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._list_initial_mean.append(np.copy(mean)) return x, mean, sigmas, y def iterate(self, x=None, mean=None, sigmas=None, y=None, args=None): for k in range(self.n_individuals): # sample offspring population if self._check_terminations(): return x, sigmas, y sigma = self.lr_sigma*self.rng_optimization.standard_normal() z = self.rng_optimization.standard_normal((self.ndim_problem,)) x[k] = mean + np.exp(sigma)*self._axis_sigmas*z # mimick the effect of intermediate recombination sigmas_1 = np.power(np.exp(np.abs(z)/self._e_hnd - 1.0), 1.0/self.ndim_problem) sigmas_2 = np.power(np.exp(sigma), 1.0/np.sqrt(self.ndim_problem)) sigmas[k] = self._axis_sigmas*sigmas_1*sigmas_2 y[k] = self._evaluate_fitness(x[k], args) return x, sigmas, y def restart_reinitialize(self, x=None, mean=None, sigmas=None, y=None): if not self.is_restart: return x, mean, sigmas, y min_y = np.min(y) if min_y < self._list_fitness[-1]: self._list_fitness.append(min_y) else: self._list_fitness.append(self._list_fitness[-1]) is_restart_1, is_restart_2 = np.all(self._axis_sigmas < self.sigma_threshold), False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info([], y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.n_individuals *= 2 x, mean, sigmas, y = self.initialize(True) self._list_fitness = [np.Inf] return x, mean, sigmas, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, sigmas, y = self.initialize() while True: x, sigmas, y = self.iterate(x, mean, sigmas, y, args) if self._check_terminations(): break order = np.argsort(y)[0] self._axis_sigmas = np.copy(sigmas[order]) mean = np.copy(x[order]) self._print_verbose_info(fitness, y) self._n_generations += 1 x, mean, sigmas, y = self.restart_reinitialize(x, mean, sigmas, y) results = self._collect(fitness, y, mean) results['_axis_sigmas'] = self._axis_sigmas return results