Limited Memory Covariance Matrix Adaptation (LMCMA)¶
- class pypop7.optimizers.es.lmcma.LMCMA(problem, options)¶
Limited-Memory Covariance Matrix Adaptation (LMCMA).
Note
Currently LMCMA is a State-Of-The-Art (SOTA) variant of CMA-ES designed especially for large-scale black-box optimization. Inspired by L-BFGS (a well-established second-order gradient-based optimizer), it stores only m direction vectors to reconstruct the covariance matirx on-the-fly, resulting in O(mn) time complexity w.r.t. each sampling, where m=O(log(n)) and n is the dimensionality of objective function.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’m’ - number of direction vectors (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’base_m’ - base number of direction vectors (int, default: 4),
’period’ - update period (int, default: int(np.maximum(1, np.log(problem[‘ndim_problem’])))),
’n_steps’ - target number of generations between vectors (int, default: problem[‘ndim_problem’]),
’c_c’ - learning rate for evolution path update (float, default: 0.5/np.sqrt(problem[‘ndim_problem’])),
’c_1’ - learning rate for covariance matrix adaptation (float, default: 1.0/(10.0*np.log(problem[‘ndim_problem’] + 1.0))),
’c_s’ - learning rate for population success rule (float, default: 0.3),
’d_s’ - changing rate for population success rule (float, default: 1.0),
’z_star’ - target success rate for population success rule (float, default: 0.3),
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.lmcma import LMCMA 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 1000, 6... 'lower_boundary': -5*numpy.ones((1000,)), 7... 'upper_boundary': 5*numpy.ones((1000,))} 8>>> options = {'max_function_evaluations': 1e5*1000, # set optimizer options 9... 'fitness_threshold': 1e-8, 10... 'seed_rng': 2022, 11... 'mean': 3*numpy.ones((1000,)), 12... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 13>>> lmcma = LMCMA(problem, options) # initialize the optimizer class 14>>> results = lmcma.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"LMCMA: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17LMCMA: 2482983, 9.998653039116044e-09
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- base_m¶
base number of direction vectors.
- Type:
int
- c_c¶
learning rate for evolution path update.
- Type:
float
- c_s¶
learning rate for population success rule.
- Type:
float
- c_1¶
learning rate for covariance matrix adaptation.
- Type:
float
- d_s¶
changing rate for population success rule.
- Type:
float
- m¶
number of direction vectors.
- Type:
int
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- n_parents¶
number of parents, aka parental population size.
- Type:
int
- n_steps¶
target number of generations between vectors.
- Type:
int
- period¶
update period.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
- z_star¶
target success rate for population success rule.
- Type:
float
References
Loshchilov, I., 2017. LM-CMA: An alternative to L-BFGS for large-scale black box optimization. Evolutionary Computation, 25(1), pp.143-171. https://direct.mit.edu/evco/article-abstract/25/1/143/1041/LM-CMA-An-Alternative-to-L-BFGS-for-Large-Scale (See Algorithm 7 for details.)
See the official C++ version from Loshchilov, which provides an interface for Matlab users: https://sites.google.com/site/ecjlmcma/ (Unfortunately, this website link appears to be not available now.)