Mixture Model-based Evolution Strategy (MMES)¶
- class pypop7.optimizers.es.mmes.MMES(problem, options)¶
Mixture Model-based Evolution Strategy (MMES).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’m’ - number of candidate direction vectors (int, default: 2*int(np.ceil(np.sqrt(problem[‘ndim_problem’])))),
’c_c’ - learning rate of evolution path update (float, default: 0.4/np.sqrt(problem[‘ndim_problem’])),
’ms’ - mixing strength (int, default: 4),
’c_s’ - learning rate of global step-size adaptation (float, default: 0.3),
’a_z’ - target significance level (float, default: 0.05),
’distance’ - minimal distance of updating evolution paths (int, default: int(np.ceil(1.0/options[‘c_c’]))),
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.mmes import MMES 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 200, 6... 'lower_boundary': -5*numpy.ones((200,)), 7... 'upper_boundary': 5*numpy.ones((200,))} 8>>> options = {'max_function_evaluations': 500000, # set optimizer options 9... 'seed_rng': 2022, 10... 'mean': 3*numpy.ones((200,)), 11... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 12>>> mmes = MMES(problem, options) # initialize the optimizer class 13>>> results = mmes.optimize() # run the optimization process 14>>> # return the number of function evaluations and best-so-far fitness 15>>> print(f"MMES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 16MMES: 500000, 7.350414979801825
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- a_z¶
target significance level.
- Type:
float
- c_c¶
learning rate of evolution path update.
- Type:
float
- c_s¶
learning rate of global step-size adaptation.
- Type:
float
- distance¶
minimal distance of updating evolution paths.
- Type:
int
- m¶
number of candidate direction vectors.
- Type:
int
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- ms¶
mixing strength.
- Type:
int
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- n_parents¶
number of parents, aka parental population size.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
References
He, X., Zheng, Z. and Zhou, Y., 2021. MMES: Mixture model-based evolution strategy for large-scale optimization. IEEE Transactions on Evolutionary Computation, 25(2), pp.320-333. https://ieeexplore.ieee.org/abstract/document/9244595
See the official Matlab version from He: https://github.com/hxyokokok/MMES