Source code for pypop7.optimizers.es.mmes

import numpy as np  # engine for numerical computing
from scipy.stats import norm

from pypop7.optimizers.es.es import ES


[docs]class MMES(ES): """Mixture Model-based Evolution Strategy (MMES). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'm' - number of candidate direction vectors (`int`, default: `2*int(np.ceil(np.sqrt(problem['ndim_problem'])))`), * 'c_c' - learning rate of evolution path update (`float`, default: `0.4/np.sqrt(problem['ndim_problem'])`), * 'ms' - mixing strength (`int`, default: `4`), * 'c_s' - learning rate of global step-size adaptation (`float`, default: `0.3`), * 'a_z' - target significance level (`float`, default: `0.05`), * 'distance' - minimal distance of updating evolution paths (`int`, default: `int(np.ceil(1.0/options['c_c']))`), * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.mmes import MMES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 200, ... 'lower_boundary': -5*numpy.ones((200,)), ... 'upper_boundary': 5*numpy.ones((200,))} >>> options = {'max_function_evaluations': 500000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((200,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> mmes = MMES(problem, options) # initialize the optimizer class >>> results = mmes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"MMES: {results['n_function_evaluations']}, {results['best_so_far_y']}") MMES: 500000, 7.350414979801825 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/3ym72w5m>`_ for more details. Attributes ---------- a_z : `float` target significance level. c_c : `float` learning rate of evolution path update. c_s : `float` learning rate of global step-size adaptation. distance : `int` minimal distance of updating evolution paths. m : `int` number of candidate direction vectors. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. ms : `int` mixing strength. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength. References ---------- He, X., Zheng, Z. and Zhou, Y., 2021. MMES: Mixture model-based evolution strategy for large-scale optimization. IEEE Transactions on Evolutionary Computation, 25(2), pp.320-333. https://ieeexplore.ieee.org/abstract/document/9244595 See the official Matlab version from He: https://github.com/hxyokokok/MMES """ def __init__(self, problem, options): ES.__init__(self, problem, options) # set number of candidate direction vectors self.m = options.get('m', 2*int(np.ceil(np.sqrt(self.ndim_problem)))) assert self.m > 0 # set learning rate of evolution path self.c_c = options.get('c_c', 0.4/np.sqrt(self.ndim_problem)) self.ms = options.get('ms', 4) # mixing strength (l) assert self.ms > 0 # set for paired test adaptation (PTA) self.c_s = options.get('c_s', 0.3) # learning rate of global step-size adaptation self.a_z = options.get('a_z', 0.05) # target significance level # set minimal distance of updating evolution paths (T) self.distance = options.get('distance', int(np.ceil(1.0/self.c_c))) # set success probability of geometric distribution (different from 4/n in the original paper) self.c_a = options.get('c_a', 3.8/self.ndim_problem) # same as the official Matlab code self.gamma = options.get('gamma', 1.0 - np.power(1.0 - self.c_a, self.m)) self._n_mirror_sampling = None self._z_1 = np.sqrt(1.0 - self.gamma) self._z_2 = np.sqrt(self.gamma/self.ms) self._p_1 = 1.0 - self.c_c self._p_2 = np.sqrt(self.c_c*(2.0 - self.c_c)) self._w_1 = 1.0 - self.c_s self._w_2 = np.sqrt(self.c_s*(2.0 - self.c_s)) def initialize(self, args=None, is_restart=False): self._n_mirror_sampling = int(np.ceil(self.n_individuals/2)) x = np.zeros((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution p = np.zeros((self.ndim_problem,)) # evolution path w = 0.0 q = np.zeros((self.m, self.ndim_problem)) # candidate direction vectors t = np.zeros((self.m,)) # recorded generations v = np.arange(self.m) # indexes to evolution paths y = np.tile(self._evaluate_fitness(mean, args), (self.n_individuals,)) # fitness return x, mean, p, w, q, t, v, y def iterate(self, x=None, mean=None, q=None, v=None, y=None, args=None): for k in range(self._n_mirror_sampling): # mirror sampling zq = np.zeros((self.ndim_problem,)) for _ in range(self.ms): j_k = v[(self.m - self.rng_optimization.geometric(self.c_a) % self.m) - 1] zq += self.rng_optimization.standard_normal()*q[j_k] z = self._z_1*self.rng_optimization.standard_normal((self.ndim_problem,)) z += self._z_2*zq x[k] = mean + self.sigma*z if (self._n_mirror_sampling + k) < self.n_individuals: x[self._n_mirror_sampling + k] = mean - self.sigma*z for k in range(self.n_individuals): if self._check_terminations(): return x, y y[k] = self._evaluate_fitness(x[k], args) return x, y def _update_distribution(self, x=None, mean=None, p=None, w=None, q=None, t=None, v=None, y=None, y_bak=None): order = np.argsort(y)[:self.n_parents] y.sort() mean_w = np.dot(self._w[:self.n_parents], x[order]) p = self._p_1*p + self._p_2*np.sqrt(self._mu_eff)*(mean_w - mean)/self.sigma mean = mean_w if self._n_generations < self.m: q[self._n_generations] = p else: k_star = np.argmin(t[v[1:]] - t[v[:(self.m - 1)]]) k_star += 1 if t[v[k_star]] - t[v[k_star - 1]] > self.distance: k_star = 0 v = np.append(np.append(v[:k_star], v[(k_star + 1):]), v[k_star]) t[v[-1]], q[v[-1]] = self._n_generations, p # conduct success-based mutation strength adaptation l_w = np.dot(self._w, y_bak[:self.n_parents] > y[:self.n_parents]) w = self._w_1*w + self._w_2*np.sqrt(self._mu_eff)*(2*l_w - 1) self.sigma *= np.exp(norm.cdf(w) - 1.0 + self.a_z) return mean, p, w, q, t, v def restart_reinitialize(self, args=None, x=None, mean=None, p=None, w=None, q=None, t=None, v=None, y=None, fitness=None): if self.is_restart and ES.restart_reinitialize(self, y): x, mean, p, w, q, t, v, y = self.initialize(args, True) self._print_verbose_info(fitness, y[0]) return x, mean, p, w, q, t, v, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, p, w, q, t, v, y = self.initialize(args) self._print_verbose_info(fitness, y[0]) while not self.termination_signal: y_bak = np.copy(y) # sample and evaluate offspring population x, y = self.iterate(x, mean, q, v, y, args) if self._check_terminations(): break mean, p, w, q, t, v = self._update_distribution(x, mean, p, w, q, t, v, y, y_bak) self._n_generations += 1 self._print_verbose_info(fitness, y) x, mean, p, w, q, t, v, y = self.restart_reinitialize( args, x, mean, p, w, q, t, v, y, fitness) results = self._collect(fitness, y, mean) results['p'] = p results['w'] = w return results