Diagonal Decoding Covariance Matrix Adaptation (DDCMA)¶
- class pypop7.optimizers.es.ddcma.DDCMA(problem, options)¶
Diagonal Decoding Covariance Matrix Adaptation (DDCMA).
Note
DDCMA is a state-of-the-art improvement version of the well-designed CMA-ES algorithm, which enjoys both two worlds of SEP-CMA-ES (faster adaptation on nearly separable problems) and CMA-ES (more robust adaptation on ill-conditioned non-separable problems) via adaptive diagonal decoding. It is highly recommended to first attempt other ES variants (e.g., LMCMA, LMMAES) for large-scale black-box optimization, since DDCMA has a quadratic time complexity (w.r.t. each sampling).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))).
Examples
Use the optimizer DDCMA to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.ddcma import DDCMA 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'is_restart': False, 11... 'mean': 3*numpy.ones((2,)), 12... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 13>>> ddcma = DDCMA(problem, options) # initialize the optimizer class 14>>> results = ddcma.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"DDCMA: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17DDCMA: 5000, 0.0
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
References
Akimoto, Y. and Hansen, N., 2020. Diagonal acceleration for covariance matrix adaptation evolution strategies. Evolutionary Computation, 28(3), pp.405-435. https://direct.mit.edu/evco/article/28/3/405/94999/Diagonal-Acceleration-for-Covariance-Matrix
See its official Python implementation from Prof. Akimoto: https://gist.github.com/youheiakimoto/1180b67b5a0b1265c204cba991fa8518