Covariance Matrix Adaptation Evolution Strategy (CMAES)¶
- class pypop7.optimizers.es.cmaes.CMAES(problem, options)¶
Covariance Matrix Adaptation Evolution Strategy (CMAES).
Note
CMAES is widely recognized as one of the State Of The Art (SOTA) for black-box optimization, according to the latest Nature review of Evolutionary Computation.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 4 + int(3*np.log(problem[‘ndim_problem’]))),
’n_parents’ - number of parents, aka parental population size (int, default: int(options[‘n_individuals’]/2)).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.es.cmaes import CMAES 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'is_restart': False, 11... 'mean': 3*numpy.ones((2,)), 12... 'sigma': 0.1} # the global step-size may need to be tuned for better performance 13>>> cmaes = CMAES(problem, options) # initialize the optimizer class 14>>> results = cmaes.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"CMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17CMAES: 5000, 9.11305771685916e-09
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size / sample size.
- Type:
int
- n_parents¶
number of parents, aka parental population size / number of positively selected search points.
- Type:
int
- sigma¶
final global step-size, aka mutation strength.
- Type:
float
References
Hansen, N., 2023. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772. https://arxiv.org/abs/1604.00772
Hansen, N., Müller, S.D. and Koumoutsakos, P., 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1), pp.1-18. https://direct.mit.edu/evco/article-abstract/11/1/1/1139/Reducing-the-Time-Complexity-of-the-Derandomized
Hansen, N. and Ostermeier, A., 2001. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2), pp.159-195. https://direct.mit.edu/evco/article-abstract/9/2/159/892/Completely-Derandomized-Self-Adaptation-in
Hansen, N. and Ostermeier, A., 1996, May. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 312-317). IEEE. https://ieeexplore.ieee.org/abstract/document/542381
See the lightweight implementation of CMA-ES from cyberagent.ai: https://github.com/CyberAgentAILab/cmaes