Source code for pypop7.optimizers.es.cmaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES  # abstract class of all evolution strategies (ES)


[docs]class CMAES(ES): """Covariance Matrix Adaptation Evolution Strategy (CMAES). .. note:: `CMAES` is widely recognized as one of **State Of The Art (SOTA)** evolutionary algorithms for continuous black-box optimization, according to the well-recognized `Nature <https://www.nature.com/articles/nature14544>`_ review of Evolutionary Computation. For some interesting applications of `CMAES`, please refer to e.g., `[Wang et al., 2024, ICLR] <https://arxiv.org/abs/2404.00451>`_, `[Slade et al., 2022, Nature] <https://www.nature.com/articles/s41586-022-05191-1>`_, just to name a few. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the black-box optimizer `CMAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.cmaes import CMAES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 3.0} # global step-size may need to be tuned >>> cmaes = CMAES(problem, options) # to initialize the optimizer class >>> results = cmaes.optimize() # to run the optimization/evolution process >>> # to return the number of function evaluations and the best-so-far fitness >>> print(f"CMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") CMAES: 5000, 0.0017836312093795592 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/4mysrjwe>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size / sample size. n_parents : `int` number of parents, aka parental population size / number of positively selected search points. sigma : `float` final global step-size, aka mutation strength (updated during optimization). References ---------- `Hansen, N. <http://www.cmap.polytechnique.fr/~nikolaus.hansen/>`_, 2023. `The CMA evolution strategy: A tutorial. <https://arxiv.org/abs/1604.00772>`_ arXiv preprint arXiv:1604.00772. Ollivier, Y., Arnold, L., Auger, A. and Hansen, N., 2017. `Information-geometric optimization algorithms: A unifying picture via invariance principles. <https://jmlr.org/papers/v18/14-467.html>`_ Journal of Machine Learning Research, 18(18), pp.1-65. Hansen, N., Müller, S.D. and Koumoutsakos, P., 2003. `Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). <https://direct.mit.edu/evco/article-abstract/11/1/1/1139/Reducing-the-Time-Complexity-of-the-Derandomized>`_ Evolutionary Computation, 11(1), pp.1-18. Hansen, N. and Ostermeier, A., 2001. `Completely derandomized self-adaptation in evolution strategies. <https://direct.mit.edu/evco/article-abstract/9/2/159/892/Completely-Derandomized-Self-Adaptation-in>`_ Evolutionary Computation, 9(2), pp.159-195. Hansen, N. and Ostermeier, A., 1996, May. `Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. <https://ieeexplore.ieee.org/abstract/document/542381>`_ In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 312-317). IEEE. See one *lightweight* Python implementation of **CMA-ES** from `cyberagent.ai <https://cyberagent.ai/>`_: https://github.com/CyberAgentAILab/cmaes Refer to the *official* Python implementation of **CMA-ES** from `Hansen, N. <http://www.cmap.polytechnique.fr/~nikolaus.hansen/>`_: https://github.com/CMA-ES/pycma """ def __init__(self, problem, options): self.options = options ES.__init__(self, problem, options) assert self.n_individuals >= 2 self._w, self._mu_eff, self._mu_eff_minus = None, None, None # variance effective selection mass # c_s (c_σ) -> decay rate for the cumulation path for the step-size control self.c_s, self.d_sigma = None, None # for cumulative step-length adaptation (CSA) self._p_s_1, self._p_s_2 = None, None # for evolution path update of CSA self._p_c_1, self._p_c_2 = None, None # for evolution path update of CMA # c_c -> decay rate for cumulation path for the rank-one update of CMA # c_1 -> learning rate for the rank-one update of CMA # c_w (c_μ) -> learning rate for the rank-µ update of CMA self.c_c, self.c_1, self.c_w, self._alpha_cov = None, None, None, 2.0 # for CMA (c_w -> c_μ) def _set_c_c(self): # to set decay rate of evolution path for rank-one update of CMA return (4.0 + self._mu_eff/self.ndim_problem)/(self.ndim_problem + 4.0 + 2.0*self._mu_eff/self.ndim_problem) def _set_c_w(self): return np.minimum(1.0 - self.c_1, self._alpha_cov*(1.0/4.0 + self._mu_eff + 1.0/self._mu_eff - 2.0) / (np.square(self.ndim_problem + 2.0) + self._alpha_cov*self._mu_eff/2.0)) def _set_d_sigma(self): return 1.0 + 2.0*np.maximum(0.0, np.sqrt((self._mu_eff - 1.0)/(self.ndim_problem + 1.0)) - 1.0) + self.c_s def initialize(self, is_restart=False): w_a = np.log((self.n_individuals + 1.0)/2.0) - np.log(np.arange(self.n_individuals) + 1.0) # w_apostrophe self._mu_eff = np.square(np.sum(w_a[:self.n_parents]))/np.sum(np.square(w_a[:self.n_parents])) self._mu_eff_minus = np.square(np.sum(w_a[self.n_parents:]))/np.sum(np.square(w_a[self.n_parents:])) self.c_s = self.options.get('c_s', (self._mu_eff + 2.0)/(self.ndim_problem + self._mu_eff + 5.0)) self.d_sigma = self.options.get('d_sigma', self._set_d_sigma()) self.c_c = self.options.get('c_c', self._set_c_c()) self.c_1 = self.options.get('c_1', self._alpha_cov/(np.square(self.ndim_problem + 1.3) + self._mu_eff)) self.c_w = self.options.get('c_w', self._set_c_w()) w_min = np.min([1.0 + self.c_1/self.c_w, 1.0 + 2.0*self._mu_eff_minus/(self._mu_eff + 2.0), (1.0 - self.c_1 - self.c_w)/(self.ndim_problem*self.c_w)]) self._w = np.where(w_a >= 0, 1.0/np.sum(w_a[w_a > 0])*w_a, w_min/(-np.sum(w_a[w_a < 0]))*w_a) self._p_s_1, self._p_s_2 = 1.0 - self.c_s, np.sqrt(self.c_s*(2.0 - self.c_s)*self._mu_eff) self._p_c_1, self._p_c_2 = 1.0 - self.c_c, np.sqrt(self.c_c*(2.0 - self.c_c)*self._mu_eff) x = np.empty((self.n_individuals, self.ndim_problem)) # a population of search points (individuals, offspring) mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution p_s = np.zeros((self.ndim_problem,)) # evolution path (p_σ) for cumulative step-length adaptation (CSA) p_c = np.zeros((self.ndim_problem,)) # evolution path for covariance matrix adaptation (CMA) cm = np.eye(self.ndim_problem) # covariance matrix of Gaussian search distribution e_ve = np.eye(self.ndim_problem) # eigenvectors of `cm` (orthogonal matrix) e_va = np.ones((self.ndim_problem,)) # square roots of eigenvalues of `cm` (in diagonal rather matrix form) y = np.empty((self.n_individuals,)) # fitness (no evaluation) d = np.empty((self.n_individuals, self.ndim_problem)) self._list_initial_mean.append(np.copy(mean)) return x, mean, p_s, p_c, cm, e_ve, e_va, y, d def iterate(self, x=None, mean=None, e_ve=None, e_va=None, y=None, d=None, args=None): for k in range(self.n_individuals): # to sample offspring population if self._check_terminations(): return x, y, d # produce a spherical (isotropic) Gaussian distribution (Nikolaus Hansen, 2023) z = self.rng_optimization.standard_normal((self.ndim_problem,)) # Gaussian noise for mutation d[k] = np.dot(e_ve @ np.diag(e_va), z) x[k] = mean + self.sigma*d[k] # offspring individual y[k] = self._evaluate_fitness(x[k], args) # fitness return x, y, d def update_distribution(self, x=None, p_s=None, p_c=None, cm=None, e_ve=None, e_va=None, y=None, d=None): order = np.argsort(y) # to rank all offspring individuals wd = np.dot(self._w[:self.n_parents], d[order[:self.n_parents]]) # update distribution mean via weighted recombination mean = np.dot(self._w[:self.n_parents], x[order[:self.n_parents]]) # update global step-size: cumulative path length control / cumulative step-size control / # cumulative step length adaptation (CSA) cm_minus_half = e_ve @ np.diag(1.0/e_va) @ e_ve.T p_s = self._p_s_1*p_s + self._p_s_2*np.dot(cm_minus_half, wd) self.sigma *= np.exp(self.c_s/self.d_sigma*(np.linalg.norm(p_s)/self._e_chi - 1.0)) # update covariance matrix (CMA) h_s = 1.0 if np.linalg.norm(p_s)/np.sqrt(1.0 - np.power(1.0 - self.c_s, 2*(self._n_generations + 1))) < ( 1.4 + 2.0/(self.ndim_problem + 1.0))*self._e_chi else 0.0 p_c = self._p_c_1*p_c + h_s*self._p_c_2*wd w_o = self._w*np.where(self._w >= 0, 1.0, self.ndim_problem/(np.square( np.linalg.norm(cm_minus_half @ d.T, axis=0)) + 1e-8)) cm = ((1.0 + self.c_1*(1.0 - h_s)*self.c_c*(2.0 - self.c_c) - self.c_1 - self.c_w*np.sum(self._w))*cm + self.c_1*np.outer(p_c, p_c)) # rank-one update for i in range(self.n_individuals): # rank-μ update (to estimate variances of sampled *steps*) cm += self.c_w*w_o[i]*np.outer(d[order[i]], d[order[i]]) # do eigen-decomposition and return both eigenvalues and eigenvectors cm = (cm + np.transpose(cm))/2.0 # to ensure symmetry of covariance matrix # use `np.linalg.eigh` rather than `np.linalg.eig` according to # https://stackoverflow.com/questions/45434989/numpy-difference-between-linalg-eig-and-linalg-eigh e_va, e_ve = np.linalg.eigh(cm) # e_va -> eigenvalues, e_ve -> eigenvectors e_va = np.sqrt(np.where(e_va < 0.0, 1e-8, e_va)) # to avoid negative eigenvalues # e_va: squared root of eigenvalues -> interpreted as individual step-sizes and its diagonal entries are # standard deviations of different components (Nikolaus Hansen, 2023) cm = e_ve @ np.diag(np.square(e_va)) @ np.transpose(e_ve) # to recover covariance matrix return mean, p_s, p_c, cm, e_ve, e_va def restart_reinitialize(self, x=None, mean=None, p_s=None, p_c=None, cm=None, e_ve=None, e_va=None, y=None, d=None): if ES.restart_reinitialize(self, y): x, mean, p_s, p_c, cm, e_ve, e_va, y, d = self.initialize(True) return x, mean, p_s, p_c, cm, e_ve, e_va, y, d def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, p_s, p_c, cm, e_ve, e_va, y, d = self.initialize() while True: # sample and evaluate offspring population x, y, d = self.iterate(x, mean, e_ve, e_va, y, d, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) self._n_generations += 1 mean, p_s, p_c, cm, e_ve, e_va = self.update_distribution(x, p_s, p_c, cm, e_ve, e_va, y, d) if self.is_restart: x, mean, p_s, p_c, cm, e_ve, e_va, y, d = self.restart_reinitialize( x, mean, p_s, p_c, cm, e_ve, e_va, y, d) results = self._collect(fitness, y, mean) results['p_s'] = p_s results['p_c'] = p_c results['e_va'] = e_va # results['e_ve'] = e_ve # do NOT save covariance matrix, owing to its *quadratic* space complexity return results