Source code for pypop7.optimizers.es.lmcma

import numpy as np

from pypop7.optimizers.es.es import ES


[docs]class LMCMA(ES): """Limited-Memory Covariance Matrix Adaptation (LMCMA). .. note:: Currently `LMCMA` is a **State-Of-The-Art (SOTA)** variant of `CMA-ES` designed especially for large-scale black-box optimization. Inspired by `L-BFGS` (a well-established *second-order* gradient-based optimizer), it stores only *m* direction vectors to reconstruct the covariance matirx on-the-fly, resulting in **O(mn)** time complexity w.r.t. each sampling, where *m=O(log(n))* and *n* is the dimensionality of objective function. Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'm' - number of direction vectors (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'base_m' - base number of direction vectors (`int`, default: `4`), * 'period' - update period (`int`, default: `int(np.maximum(1, np.log(problem['ndim_problem'])))`), * 'n_steps' - target number of generations between vectors (`int`, default: `problem['ndim_problem']`), * 'c_c' - learning rate for evolution path update (`float`, default: `0.5/np.sqrt(problem['ndim_problem'])`), * 'c_1' - learning rate for covariance matrix adaptation (`float`, default: `1.0/(10.0*np.log(problem['ndim_problem'] + 1.0))`), * 'c_s' - learning rate for population success rule (`float`, default: `0.3`), * 'd_s' - changing rate for population success rule (`float`, default: `1.0`), * 'z_star' - target success rate for population success rule (`float`, default: `0.3`), * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer `LMCMA` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.lmcma import LMCMA >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 1000, ... 'lower_boundary': -5*numpy.ones((1000,)), ... 'upper_boundary': 5*numpy.ones((1000,))} >>> options = {'max_function_evaluations': 1e5*1000, # set optimizer options ... 'fitness_threshold': 1e-8, ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((1000,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> lmcma = LMCMA(problem, options) # initialize the optimizer class >>> results = lmcma.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"LMCMA: {results['n_function_evaluations']}, {results['best_so_far_y']}") LMCMA: 2482983, 9.998653039116044e-09 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/24jnfhbs>`_ for more details. Attributes ---------- base_m : `int` base number of direction vectors. c_c : `float` learning rate for evolution path update. c_s : `float` learning rate for population success rule. c_1 : `float` learning rate for covariance matrix adaptation. d_s : `float` changing rate for population success rule. m : `int` number of direction vectors. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. n_steps : `int` target number of generations between vectors. period : `int` update period. sigma : `float` final global step-size, aka mutation strength. z_star : `float` target success rate for population success rule. References ---------- Loshchilov, I., 2017. LM-CMA: An alternative to L-BFGS for large-scale black box optimization. Evolutionary Computation, 25(1), pp.143-171. https://direct.mit.edu/evco/article-abstract/25/1/143/1041/LM-CMA-An-Alternative-to-L-BFGS-for-Large-Scale (See Algorithm 7 for details.) See the official C++ version from Loshchilov, which provides an interface for Matlab users: https://sites.google.com/site/ecjlmcma/ (Unfortunately, this website link appears to be not available now.) """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.m = options.get('m', 4 + int(3*np.log(self.ndim_problem))) # number of direction vectors self.base_m = options.get('base_m', 4) # base number of direction vectors self.period = options.get('period', int(np.maximum(1, np.log(self.ndim_problem)))) # update period self.n_steps = options.get('n_steps', self.ndim_problem) # target number of generations between vectors self.c_c = options.get('c_c', 0.5/np.sqrt(self.ndim_problem)) # learning rate for evolution path self.c_1 = options.get('c_1', 1.0/(10.0*np.log(self.ndim_problem + 1.0))) self.c_s = options.get('c_s', 0.3) # learning rate for population success rule (PSR) self.d_s = options.get('d_s', 1.0) # changing rate for PSR self.z_star = options.get('z_star', 0.3) # target success rate for PSR self._a = np.sqrt(1.0 - self.c_1) self._c = 1.0/np.sqrt(1.0 - self.c_1) self._bd_1 = np.sqrt(1.0 - self.c_1) self._bd_2 = self.c_1/(1.0 - self.c_1) self._p_c_1 = 1.0 - self.c_c self._p_c_2 = None self._j = None self._l = None self._it = None self._rr = None # for PSR def initialize(self, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population p_c = np.zeros((self.ndim_problem,)) # evolution path s = 0.0 # for PSR vm = np.empty((self.m, self.ndim_problem)) pm = np.empty((self.m, self.ndim_problem)) b = np.empty((self.m,)) d = np.empty((self.m,)) y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._p_c_2 = np.sqrt(self.c_c*(2.0 - self.c_c)*self._mu_eff) self._j = [None]*self.m self._l = [None]*self.m self._it = 0 self._rr = np.arange(self.n_individuals*2, 0, -1) - 1 return mean, x, p_c, s, vm, pm, b, d, y def _rademacher(self): """Sampling from Rademacher distribution.""" random = self.rng_optimization.integers(2, size=(self.ndim_problem,)) random[random == 0] = -1 return np.double(random) def _a_z(self, z=None, pm=None, vm=None, b=None, start=None, it=None): """Az(): Cholesky factor-vector update.""" x = np.copy(z) for t in range(start, it): x = self._a*x + b[self._j[t]]*np.dot(vm[self._j[t]], z)*pm[self._j[t]] return x def iterate(self, mean=None, x=None, pm=None, vm=None, y=None, b=None, args=None): sign, a_z = 1, np.empty((self.ndim_problem,)) # for mirrored sampling for k in range(self.n_individuals): if self._check_terminations(): return x, y if sign == 1: # SelectSubst(): direction vectors selection base_m = (10.0*self.base_m if k == 0 else self.base_m)*np.abs( self.rng_optimization.standard_normal()) base_m = float(self._it if base_m > self._it else base_m) a_z = self._a_z(self._rademacher(), pm, vm, b, int(self._it - base_m) if self._it > 1 else 0, self._it) x[k] = mean + sign*self.sigma*a_z y[k] = self._evaluate_fitness(x[k], args) sign *= -1 # sampling in the opposite direction for mirrored sampling return x, y def _a_inv_z(self, v=None, vm=None, d=None, i=None): """Ainvz(): inverse Cholesky factor-vector update.""" x = np.copy(v) for t in range(0, i): x = self._c*x - d[self._j[t]]*np.dot(vm[self._j[t]], x)*vm[self._j[t]] return x def update_distribution(self, mean=None, x=None, p_c=None, s=None, vm=None, pm=None, b=None, d=None, y=None, y_bak=None): mean_bak = np.dot(self._w, x[np.argsort(y)[:self.n_parents]]) p_c = self._p_c_1*p_c + self._p_c_2*(mean_bak - mean)/self.sigma # select and store direction vectors - to preserve a certain temporal distance in terms of # number of generations between the stored direction vectors if self._n_generations % self.period == 0: # temporal distance _n_generations = int(self._n_generations/self.period) # temporal distance i_min = 1 # index of the first vector that will be replaced by the new one # the higher is the index of `self._j`, the more recent is the corresponding direction vector if _n_generations < self.m: self._j[_n_generations] = _n_generations else: if self.m > 1: # find a pair of consecutively saved vectors with the distance between them # closest to a target distance d_min = (self._l[self._j[1]] - self._l[self._j[0]]) - self.n_steps for j in range(2, self.m): d_cur = (self._l[self._j[j]] - self._l[self._j[j - 1]]) - self.n_steps if d_cur < d_min: d_min, i_min = d_cur, j i_min = 0 if d_min >= 0 else i_min updated = self._j[i_min] for j in range(i_min, self.m - 1): self._j[j] = self._j[j + 1] self._j[self.m - 1] = updated self._it = int(np.minimum(self.m, _n_generations + 1)) self._l[self._j[self._it - 1]] = _n_generations*self.period pm[self._j[self._it - 1]] = p_c for i in range(0 if i_min == 1 else i_min, self._it): vm[self._j[i]] = self._a_inv_z(pm[self._j[i]], vm, d, i) v_n = np.dot(vm[self._j[i]], vm[self._j[i]]) bd_3 = np.sqrt(1.0 + self._bd_2*v_n) b[self._j[i]] = self._a/v_n*(bd_3 - 1.0) d[self._j[i]] = self._c/v_n*(1.0 - 1.0/bd_3) if self._n_generations > 0: # for PSR r = np.argsort(np.hstack((y, y_bak))) z_psr = np.sum(self._rr[r < self.n_individuals] - self._rr[r >= self.n_individuals]) z_psr = z_psr/np.power(self.n_individuals, 2) - self.z_star s = (1.0 - self.c_s)*s + self.c_s*z_psr self.sigma *= np.exp(s/self.d_s) return mean_bak, p_c, s, vm, pm, b, d def restart_reinitialize(self, mean=None, x=None, p_c=None, s=None, vm=None, pm=None, b=None, d=None, y=None): if self.is_restart and ES.restart_reinitialize(self, y): mean, x, p_c, s, vm, pm, b, d, y = self.initialize(True) return mean, x, p_c, s, vm, pm, b, d, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) mean, x, p_c, s, vm, pm, b, d, y = self.initialize() while not self.termination_signal: y_bak = np.copy(y) # sample and evaluate offspring population x, y = self.iterate(mean, x, pm, vm, y, b, args) if self._check_terminations(): break mean, p_c, s, vm, pm, b, d = self.update_distribution( mean, x, p_c, s, vm, pm, b, d, y, y_bak) self._print_verbose_info(fitness, y) self._n_generations += 1 mean, x, p_c, s, vm, pm, b, d, y = self.restart_reinitialize( mean, x, p_c, s, vm, pm, b, d, y) results = self._collect(fitness, y, mean) results['p_c'] = p_c results['s'] = s return results