Source code for pypop7.optimizers.es.opoc2006

import numpy as np

from pypop7.optimizers.es.es import ES


[docs]class OPOC2006(ES): """(1+1)-Cholesky-CMA-ES 2006 (OPOC2006). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.opoc2006 import OPOC2006 >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> opoc2006 = OPOC2006(problem, options) # initialize the optimizer class >>> results = opoc2006.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"OPOC2006: {results['n_function_evaluations']}, {results['best_so_far_y']}") OPOC2006: 5000, 2.2322932872757695e-17 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/w5xmyvd5>`_ for more details. References ---------- Igel, C., Suttorp, T. and Hansen, N., 2006, July. A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 453-460). ACM. https://dl.acm.org/doi/abs/10.1145/1143997.1144082 """ def __init__(self, problem, options): options['n_individuals'] = 1 # mandatory setting options['n_parents'] = 1 # mandatory setting ES.__init__(self, problem, options) if self.lr_sigma is None: self.lr_sigma = 1.0/(1.0 + self.ndim_problem/2.0) self.p_ts = options.get('p_ts', 2.0/11.0) self.c_p = options.get('c_p', 1.0/12.0) self.c_c = options.get('c_c', 2.0/(self.ndim_problem + 2.0)) self.c_cov = options.get('c_cov', 2.0/(np.power(self.ndim_problem, 2) + 6.0)) self.p_t = options.get('p_t', 0.44) self.c_a = options.get('c_a', np.sqrt(1.0 - self.c_cov)) def initialize(self, args=None, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution y = self._evaluate_fitness(mean, args) # fitness a = np.diag(np.ones(self.ndim_problem,)) # linear transformation (Cholesky factors) best_so_far_y, p_s = np.copy(y), self.p_ts return mean, y, a, best_so_far_y, p_s def iterate(self, mean=None, a=None, best_so_far_y=None, p_s=None, args=None): # sample and evaluate only one offspring z = self.rng_optimization.standard_normal((self.ndim_problem,)) x = mean + self.sigma*np.dot(a, z) y = self._evaluate_fitness(x, args) l_s = 1 if y <= best_so_far_y else 0 p_s = (1.0 - self.c_p)*p_s + self.c_p*l_s self.sigma *= np.exp(self.lr_sigma*(p_s - self.p_ts)/(1.0 - self.p_ts)) if y <= best_so_far_y: mean, best_so_far_y = x, y if p_s < self.p_t: z_norm, c_a = np.power(np.linalg.norm(z), 2), np.power(self.c_a, 2) a = self.c_a*a + self.c_a/z_norm*(np.sqrt(1.0 + ((1.0 - c_a)*z_norm)/c_a) - 1.0)*np.dot( np.dot(a, z[:, np.newaxis]), z[np.newaxis, :]) return mean, y, a, best_so_far_y, p_s def restart_reinitialize(self, mean=None, y=None, a=None, best_so_far_y=None, p_s=None, fitness=None, args=None): self._list_fitness.append(best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info(fitness, y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.sigma = np.copy(self._sigma_bak) mean, y, a, best_so_far_y, p_s = self.initialize(args, True) self._list_fitness = [best_so_far_y] return mean, y, a, best_so_far_y, p_s def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) mean, y, a, best_so_far_y, p_s = self.initialize(args) while not self.termination_signal: self._print_verbose_info(fitness, y) mean, y, a, best_so_far_y, p_s = self.iterate(mean, a, best_so_far_y, p_s, args) self._n_generations += 1 if self._check_terminations(): break if self.is_restart: mean, y, a, best_so_far_y, p_s = self.restart_reinitialize( mean, y, a, best_so_far_y, p_s, fitness, args) return self._collect(fitness, y, mean)