Source code for pypop7.optimizers.es.fcmaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES


[docs]class FCMAES(ES): """Fast Covariance Matrix Adaptation Evolution Strategy (FCMAES). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.fcmaes import FCMAES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> fcmaes = FCMAES(problem, options) # initialize the optimizer class >>> results = fcmaes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"FCMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") FCMAES: 5000, 0.016679956606138215 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/3hmkaymn>`_ for more details. Attributes ---------- mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength. References ---------- Li, Z., Zhang, Q., Lin, X. and Zhen, H.L., 2020. Fast covariance matrix adaptation for large-scale black-box optimization. IEEE Transactions on Cybernetics, 50(5), pp.2073-2083. https://ieeexplore.ieee.org/abstract/document/8533604 Li, Z. and Zhang, Q., 2016. What does the evolution path learn in CMA-ES?. In Parallel Problem Solving from Nature (pp. 751-760). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-45823-6_70 """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.m = self.n_individuals # number of evolution paths self.c = 2.0/(self.ndim_problem + 5.0) # learning rate of evolution path update self.c_1 = 1.0/(3.0*np.sqrt(self.ndim_problem) + 5.0) # sampling factor self.c_s = 0.3 # learning rate of rank-based success rule for global step-size adaptation self.q_star = 0.27 # target of rank-based success rule for global step-size adaptation self.d_s = 1.0 # damping factor of rank-based success rule for global step-size adaptation self.n_steps = self.ndim_problem # updating frequency of direction vector set self._x_1 = 1.0 - self.c_1 self._x_2 = np.sqrt((1.0 - self.c_1)*self.c_1) self._x_3 = np.sqrt(self.c_1) self._p_1 = 1.0 - self.c self._p_2 = None self._rr = None def initialize(self, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population y = np.empty((self.n_individuals,)) # fitness (no evaluation) p = np.zeros((self.ndim_problem,)) # evolution path p_hat = np.zeros((self.m, self.ndim_problem)) # direction vector set s = 0 self._p_2 = np.sqrt(self.c*(2.0 - self.c)*self._mu_eff) self._rr = np.arange(self.n_parents*2) + 1 return mean, x, y, p, p_hat, s def iterate(self, mean=None, x=None, y=None, p=None, p_hat=None, args=None): for i in range(self.n_individuals): if self._check_terminations(): return x, y z = self.rng_optimization.standard_normal((self.ndim_problem,)) if self._n_generations < self.m: # unbiased sampling when starting x[i] = mean + self.sigma*z else: x[i] = mean + self.sigma*(self._x_1*z + self._x_2*self.rng_optimization.standard_normal()*p_hat[i] + self._x_3*self.rng_optimization.standard_normal()*p) y[i] = self._evaluate_fitness(x[i], args) return x, y def _update_distribution(self, mean=None, x=None, y=None, p=None, p_hat=None, s=None, y_bak=None): order = np.argsort(y)[:self.n_parents] y.sort() mean_bak = np.dot(self._w[:self.n_parents], x[order]) p = self._p_1*p + self._p_2*(mean_bak - mean)/self.sigma if self._n_generations % self.n_steps == 0: p_hat[:-1] = p_hat[1:] p_hat[-1] = p if self._n_generations > 0: r = np.argsort(np.hstack((y_bak[:self.n_parents], y[:self.n_parents]))) rr = self._rr[r < self.n_parents] - self._rr[r >= self.n_parents] q = np.dot(self._w, rr)/self.n_parents s = (1.0 - self.c_s)*s + self.c_s*(q - self.q_star) self.sigma *= np.exp(s/self.d_s) self._n_generations += 1 return mean_bak, p, p_hat, s def restart_reinitialize(self, mean=None, x=None, y=None, p=None, p_hat=None, s=None): if self.is_restart and ES.restart_reinitialize(self, y): self.d_s *= 2.0 self.m = self.n_individuals mean, x, y, p, p_hat, s = self.initialize(True) return mean, x, y, p, p_hat, s def optimize(self, fitness_function=None, args=None): fitness = ES.optimize(self, fitness_function) mean, x, y, p, p_hat, s = self.initialize() while not self.termination_signal: y_bak = np.copy(y) x, y = self.iterate(mean, x, y, p, p_hat, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) mean, p, p_hat, s = self._update_distribution(mean, x, y, p, p_hat, s, y_bak) mean, x, y, p, p_hat, s = self.restart_reinitialize(mean, x, y, p, p_hat, s) results = self._collect(fitness, y, mean) results['p'] = p results['s'] = s return results