Source code for pypop7.optimizers.es.saes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES


[docs]class SAES(ES): """Self-Adaptation Evolution Strategy (SAES). .. note:: `SAES` adapts only the *global* step-size on-the-fly with a *relatively small* population, often resulting in *slow* (and even *premature*) convergence for large-scale black-box optimization (LBO), especially on *ill-conditioned* fitness landscapes. Therefore, it is recommended to first attempt more advanced ES variants (e.g. `LMCMA`, `LMMAES`) for LBO. Here we include `SAES` mainly for *benchmarking* and *theoretical* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`), * 'lr_sigma' - learning rate of global step-size (`float`, default: `1.0/np.sqrt(2*problem['ndim_problem'])`). Examples -------- Use the black-box optimizer `SAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.saes import SAES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 3.0} # global step-size may need to be tuned >>> saes = SAES(problem, options) # to initialize the optimizer class >>> results = saes.optimize() # to run the optimization/evolution process >>> # to return the number of function evaluations and the best-so-far fitness >>> print(f"SAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") SAES: 5000, 0.012622712890954227 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/mvkspst4>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. lr_sigma : `float` learning rate of global step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength (changed during optimization). References ---------- Beyer, H.G., 2020, July. `Design principles for matrix adaptation evolution strategies. <https://dl.acm.org/doi/abs/10.1145/3377929.3389870>`_ In Proceedings of ACM Conference on Genetic and Evolutionary Computation Companion (pp. 682-700). ACM. http://www.scholarpedia.org/article/Evolution_strategies See its official Matlab/Octave version from `Prof. Beyer <https://homepages.fhv.at/hgb/>`_: https://homepages.fhv.at/hgb/downloads/mu_mu_I_lambda-ES.oct """ def __init__(self, problem, options): ES.__init__(self, problem, options) if self.lr_sigma is None: self.lr_sigma = 1.0/np.sqrt(2*self.ndim_problem) def initialize(self, is_restart=False): x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution sigmas = np.ones((self.n_individuals,)) # global step-sizes for all offspring y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._list_initial_mean.append(np.copy(mean)) return x, mean, sigmas, y def iterate(self, x=None, mean=None, sigmas=None, y=None, args=None): for k in range(self.n_individuals): # to sample offspring population if self._check_terminations(): return x, sigmas, y sigmas[k] = self.sigma*np.exp(self.lr_sigma*self.rng_optimization.standard_normal()) x[k] = mean + sigmas[k]*self.rng_optimization.standard_normal((self.ndim_problem,)) y[k] = self._evaluate_fitness(x[k], args) return x, sigmas, y def _restart_initialize(self, y): min_y = np.min(y) if min_y < self._list_fitness[-1]: self._list_fitness.append(min_y) else: self._list_fitness.append(self._list_fitness[-1]) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info([], y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.n_individuals *= 2 self.n_parents = int(self.n_individuals/2) self._list_fitness = [np.Inf] return is_restart def restart_initialize(self, x=None, mean=None, sigmas=None, y=None): if self._restart_initialize(y): self.sigma = np.copy(self._sigma_bak) x, mean, sigmas, y = self.initialize(True) return x, mean, sigmas, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, sigmas, y = self.initialize() while True: # sample and evaluate offspring population x, sigmas, y = self.iterate(x, mean, sigmas, y, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) self._n_generations += 1 order = np.argsort(y)[:self.n_parents] # use intermediate multi-recombination mean = np.mean(x[order], axis=0) self.sigma = np.mean(sigmas[order]) if self.is_restart: x, mean, sigmas, y = self.restart_initialize(x, mean, sigmas, y) return self._collect(fitness, y, mean)