Source code for pypop7.optimizers.es.lmmaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES


[docs]class LMMAES(ES): """Limited-Memory Matrix Adaptation Evolution Strategy (LMMAES). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`). * 'n_evolution_paths' - number of evolution paths (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`), * 'c_s' - learning rate of evolution path update (`float`, default: `2.0*options['n_individuals']/problem['ndim_problem']`). Examples -------- Use the optimizer `LMMAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.lmmaes import LMMAES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 200, ... 'lower_boundary': -5.0*numpy.ones((200,)), ... 'upper_boundary': 5.0*numpy.ones((200,))} >>> options = {'max_function_evaluations': 500000, # set optimizer options ... 'seed_rng': 0, ... 'mean': 3.0*numpy.ones((200,)), ... 'sigma': 0.1, # the global step-size may need to be tuned for better performance ... 'is_restart': False} >>> lmmaes = LMMAES(problem, options) # initialize the optimizer class >>> results = lmmaes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"LMMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") LMMAES: 500000, 1.0745854362945823e-06 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/4pttkpmc>`_ for more details. Attributes ---------- c_s : `float` learning rate of evolution path update. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_evolution_paths : `int` number of evolution paths. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength. References ---------- Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019. `Large scale black-box optimization by limited-memory matrix adaptation. <https://ieeexplore.ieee.org/abstract/document/8410043>`_ IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358. See the official Python version from Prof. Glasmachers: https://www.ini.rub.de/upload/editor/file/1604950981_dc3a4459a4160b48d51e/lmmaes.py """ def __init__(self, problem, options): ES.__init__(self, problem, options) n_evolution_paths = 4 + int(3*np.log(self.ndim_problem)) self.n_evolution_paths = options.get('n_evolution_paths', n_evolution_paths) self.c_s, self._c_c = None, None self._s_1, self._s_2 = None, None self._c_d = 1.0/(self.ndim_problem*np.power(1.5, np.arange(self.n_evolution_paths))) def initialize(self, is_restart=False): self.c_s = self.options.get('c_s', 2.0*self.n_individuals/self.ndim_problem) _s_1 = 1.0 - self.c_s if _s_1 < 0.0: # undefined in the original paper _s_1 = 0.5 self._s_1 = _s_1 _s_2 = self._mu_eff*self.c_s*(2.0 - self.c_s) if _s_2 < 0.0: # undefined in the original paper _s_2 = np.square(0.5) self._s_2 = np.sqrt(_s_2) self._c_c = self.n_individuals/(self.ndim_problem*np.power(4.0, np.arange(self.n_evolution_paths))) z = np.empty((self.n_individuals, self.ndim_problem)) # Gaussian noise for mutation d = np.empty((self.n_individuals, self.ndim_problem)) # search directions mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution s = np.zeros((self.ndim_problem,)) # evolution path tm = np.zeros((self.n_evolution_paths, self.ndim_problem)) # transformation matrix (M) y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._list_initial_mean.append(np.copy(mean)) return z, d, mean, s, tm, y def iterate(self, z=None, d=None, mean=None, tm=None, y=None, args=None): for k in range(self.n_individuals): if self._check_terminations(): return z, d, y z[k] = self.rng_optimization.standard_normal((self.ndim_problem,)) d[k] = z[k] for j in range(np.minimum(self._n_generations, self.n_evolution_paths)): d[k] = (1.0 - self._c_d[j])*d[k] + self._c_d[j]*tm[j]*np.dot(tm[j], d[k]) y[k] = self._evaluate_fitness(mean + self.sigma*d[k], args) return z, d, y def _update_distribution(self, z=None, d=None, mean=None, s=None, tm=None, y=None): order = np.argsort(y)[:self.n_parents] d_w = np.dot(self._w[:self.n_parents], d[order]) z_w = np.dot(self._w[:self.n_parents], z[order]) # update distribution mean mean += self.sigma*d_w # update evolution path (p_c, s) and low-rank transformation matrix (tm) s = self._s_1*s + self._s_2*z_w for k in range(self.n_evolution_paths): # rank-m _tm_1 = 1.0 - self._c_c[k] if _tm_1 < 0.0: # undefined in the original paper _tm_1 = 0.5 _tm_2 = self._mu_eff*self._c_c[k]*(2.0 - self._c_c[k]) if _tm_2 < 0.0: # undefined in the original paper _tm_2 = np.square(0.5) tm[k] = _tm_1*tm[k] + np.sqrt(_tm_2)*z_w # update global step-size self.sigma *= np.exp(self.c_s/2.0*(np.sum(np.square(s))/self.ndim_problem - 1.0)) return mean, s, tm def restart_reinitialize(self, z=None, d=None, mean=None, s=None, tm=None, y=None): if self.is_restart and ES.restart_reinitialize(self, y): z, d, mean, s, tm, y = self.initialize(True) return z, d, mean, s, tm, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) z, d, mean, s, tm, y = self.initialize() while not self.termination_signal: # sample and evaluate offspring population z, d, y = self.iterate(z, d, mean, tm, y, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) self._n_generations += 1 mean, s, tm = self._update_distribution(z, d, mean, s, tm, y) z, d, mean, s, tm, y = self.restart_reinitialize(z, d, mean, s, tm, y) results = self._collect(fitness, y, mean) results['s'] = s results['tm'] = tm return results