Hooke-Jeeves (HJ)¶
- class pypop7.optimizers.ds.hj.HJ(problem, options)¶
Hooke-Jeeves direct (pattern) search method (HJ).
Note
HJ is one of the most-popular and most-cited DS methods, originally published in one top-tier Computer Science journal (i.e., JACM) in 1961. Although sometimes it is still used to optimize low-dimensional black-box problems, it is highly recommended to attempt other more advanced methods for large-scale black-box optimization.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size (float, default: 1.0),
’x’ - initial (starting) point (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’gamma’ - decreasing factor of global step-size (float, default: 0.5).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.ds.hj import HJ 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'x': 3*numpy.ones((2,)), 11... 'sigma': 0.1, # the global step-size may need to be tuned for better performance 12... 'verbose_frequency': 500} 13>>> hj = HJ(problem, options) # initialize the optimizer class 14>>> results = hj.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"HJ: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17HJ: 5000, 0.22119484961034389
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- gamma¶
decreasing factor of global step-size.
- Type:
float
- sigma¶
final global step-size (changed during optimization).
- Type:
float
- x¶
initial (starting) point.
- Type:
array_like
References
Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. MIT Press. https://algorithmsbook.com/optimization/files/chapter-7.pdf (See Algorithm 7.5 (Page 104) for details.)
http://garfield.library.upenn.edu/classics1980/A1980JK10100001.pdf
Kaupe Jr, A.F., 1963. Algorithm 178: Direct search. Communications of the ACM, 6(6), pp.313-314. https://dl.acm.org/doi/pdf/10.1145/366604.366632
Hooke, R. and Jeeves, T.A., 1961. “Direct search” solution of numerical and statistical problems. Journal of the ACM, 8(2), pp.212-229. https://dl.acm.org/doi/10.1145/321062.321069