Source code for pypop7.optimizers.cc.cc

import numpy as np

from pypop7.optimizers.core.optimizer import Optimizer


[docs]class CC(Optimizer): """Cooperative Coevolution (CC). This is the **abstract** class for all `CC` classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand. .. note:: `CC` uses the **decomposition** strategy to alleviate curse-of-dimensionality for large-scale black-box optimization. Refer to `[Panait et al., 2008, JMLR] <https://jmlr.org/papers/volume9/panait08a/panait08a.pdf>`_ for convergence analyses and e.g. `[Gomez et al.,, 2008, JMLR] <https://www.jmlr.org/papers/v9/gomez08a.html>`_ for state-of-the-art *neuroevolution* applications from Schmidhuber and/or Miikkulainen's lab. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular setting (`key`): * 'n_individuals' - number of individuals/samples, aka population size (`int`, default: `100`). References ---------- Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008. Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research, 9(31), pp.937-965. https://www.jmlr.org/papers/v9/gomez08a.html Panait, L., Tuyls, K. and Luke, S., 2008. Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. Journal of Machine Learning Research, 9, pp.423-457. https://jmlr.org/papers/volume9/panait08a/panait08a.pdf Schmidhuber, J., Wierstra, D., Gagliolo, M. and Gomez, F., 2007. Training recurrent networks by evolino. Neural Computation, 19(3), pp.757-779. https://direct.mit.edu/neco/article-abstract/19/3/757/7156/Training-Recurrent-Networks-by-Evolino Gomez, F.J. and Schmidhuber, J., 2005, June. Co-evolving recurrent neurons learn deep memory POMDPs. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 491-498). ACM. https://dl.acm.org/doi/10.1145/1068009.1068092 Fan, J., Lau, R. and Miikkulainen, R., 2003. Utilizing domain knowledge in neuroevolution. In International Conference on Machine Learning (pp. 170-177). https://www.aaai.org/Library/ICML/2003/icml03-025.php Potter, M.A. and De Jong, K.A., 2000. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), pp.1-29. https://direct.mit.edu/evco/article/8/1/1/859/Cooperative-Coevolution-An-Architecture-for Gomez, F.J. and Miikkulainen, R., 1999, July. Solving non-Markovian control tasks with neuroevolution. In Proceedings of International Joint Conference on Artificial Intelligence (pp. 1356-1361). https://www.ijcai.org/Proceedings/99-2/Papers/097.pdf Moriarty, D.E. and Mikkulainen, R., 1996. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22(1), pp.11-32. https://link.springer.com/article/10.1023/A:1018004120707 Moriarty, D.E. and Miikkulainen, R., 1995. Efficient learning from delayed rewards through symbiotic evolution. In International Conference on Machine Learning (pp. 396-404). Morgan Kaufmann. https://www.sciencedirect.com/science/article/pii/B9781558603776500566 Potter, M.A. and De Jong, K.A., 1994, October. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature (pp. 249-257). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-58484-6_269 """ def __init__(self, problem, options): Optimizer.__init__(self, problem, options) self.n_individuals = options.get('n_individuals', 100) # number of individuals/samples, aka population size assert self.n_individuals > 0 self._n_generations = 0 # initial number of generations (cycles) self._printed_evaluations = self.n_function_evaluations # for printing def initialize(self): raise NotImplementedError def iterate(self): pass def _print_verbose_info(self, fitness, y, is_print=False): if y is not None: if self.saving_fitness: if not np.isscalar(y): fitness.extend(y) else: fitness.append(y) if self.verbose: is_verbose = self._printed_evaluations != self.n_function_evaluations # to avoid repeated printing is_verbose_1 = (not self._n_generations % self.verbose) and is_verbose is_verbose_2 = self.termination_signal > 0 and is_verbose is_verbose_3 = is_print and is_verbose if is_verbose_1 or is_verbose_2 or is_verbose_3: info = ' * Generation {:d}: best_so_far_y {:7.5e}, min(y) {:7.5e} & Evaluations {:d}' print(info.format(self._n_generations, self.best_so_far_y, np.min(y), self.n_function_evaluations)) self._printed_evaluations = self.n_function_evaluations def _collect(self, fitness, y=None): self._print_verbose_info(fitness, y) results = Optimizer._collect(self, fitness) results['_n_generations'] = self._n_generations return results