Source code for pypop7.optimizers.cc.cocma

import time

import numpy as np

from pypop7.optimizers.es.cmaes import CMAES
from pypop7.optimizers.cc import CC


[docs]class COCMA(CC): """CoOperative CO-evolutionary Covariance Matrix Adaptation (COCMA). .. note:: For `COCMA`, `CMA-ES <https://pypop.readthedocs.io/en/latest/es/cmaes.html>`_ is used as the suboptimizer, since it could learn the variable dependencies in each subsapce to accelerate convergence. The simplest *cyclic* decomposition is employed to tackle **non-separable** objective functions, argurably a common feature of most real-world applications. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular setting (`key`): * 'n_individuals' - number of individuals/samples, aka population size (`int`, default: `100`). * 'sigma' - initial global step-size (`float`, default: `problem['upper_boundary'] - problem['lower_boundary']/3.0`), * 'ndim_subproblem' - dimensionality of subproblem for decomposition (`int`, default: `30`). Examples -------- Use the optimizer `COCMA` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.cc.cocma import COCMA >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> cocma = COCMA(problem, options) # initialize the optimizer class >>> results = cocma.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"COCMA: {results['n_function_evaluations']}, {results['best_so_far_y']}") COCMA: 5000, 0.00041717244099826557 For its correctness checking of coding, we cannot provide the code-based repeatability report, since this implementation combines different papers. To our knowledge, few well-designed open-source code of `CC` is available for non-separable black-box optimization. Attributes ---------- n_individuals : `int` number of individuals/samples, aka population size. sigma : `float` initial global step-size. ndim_subproblem : `int` dimensionality of subproblem for decomposition. References ---------- Mei, Y., Omidvar, M.N., Li, X. and Yao, X., 2016. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Transactions on Mathematical Software, 42(2), pp.1-24. https://dl.acm.org/doi/10.1145/2791291 Potter, M.A. and De Jong, K.A., 1994, October. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature (pp. 249-257). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-58484-6_269 """ def __init__(self, problem, options): CC.__init__(self, problem, options) self.sigma = options.get('sigma') # global step size assert self.sigma is None or self.sigma > 0.0 self.ndim_subproblem = int(options.get('ndim_subproblem', 30)) assert self.ndim_subproblem > 0 def initialize(self, arg=None): self.best_so_far_x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary) self.best_so_far_y = self._evaluate_fitness(self.best_so_far_x, arg) sub_optimizers = [] for i in range(int(np.ceil(self.ndim_problem/self.ndim_subproblem))): ii = range(i*self.ndim_subproblem, np.minimum((i + 1)*self.ndim_subproblem, self.ndim_problem)) problem = {'ndim_problem': len(ii), # cyclic decomposition 'lower_boundary': self.lower_boundary[ii], 'upper_boundary': self.upper_boundary[ii]} if self.sigma is None: sigma = np.min((self.upper_boundary[ii] - self.lower_boundary[ii])/3.0) else: sigma = self.sigma options = {'seed_rng': self.rng_initialization.integers(np.iinfo(np.int64).max), 'sigma': sigma, 'max_runtime': self.max_runtime, 'verbose': False} cma = CMAES(problem, options) cma.start_time = time.time() sub_optimizers.append(cma) return sub_optimizers, self.best_so_far_y def optimize(self, fitness_function=None, args=None): fitness, is_initialization = CC.optimize(self, fitness_function), True sub_optimizers, y = self.initialize(args) x_s, mean_s, ps_s, pc_s, cm_s, ee_s, ea_s, y_s, d_s = [], [], [], [], [], [], [], [], [] while not self._check_terminations(): self._print_verbose_info(fitness, y) if is_initialization: is_initialization = False for i, opt in enumerate(sub_optimizers): if self._check_terminations(): break x, mean, p_s, p_c, cm, e_ve, e_va, yy, d = opt.initialize() x_s.append(x) mean_s.append(mean) ps_s.append(p_s) pc_s.append(p_c) cm_s.append(cm) ee_s.append(e_ve) ea_s.append(e_va) y_s.append(yy) d_s.append(d) else: y = [] for i, opt in enumerate(sub_optimizers): ii = range(i*self.ndim_subproblem, np.minimum((i + 1)*self.ndim_subproblem, self.ndim_problem)) def sub_function(sub_x): # to define sub-function for each sub-optimizer best_so_far_x = np.copy(self.best_so_far_x) best_so_far_x[ii] = sub_x return self._evaluate_fitness(best_so_far_x, args) opt.fitness_function = sub_function opt.max_function_evaluations = (opt.n_function_evaluations + self.max_function_evaluations - self.n_function_evaluations) x_s[i], y_s[i], d_s[i] = opt.iterate(x_s[i], mean_s[i], ee_s[i], ea_s[i], y_s[i], d_s[i], args) y.extend(y_s[i]) if self._check_terminations(): break opt._n_generations += 1 mean_s[i], ps_s[i], pc_s[i], cm_s[i], ee_s[i], ea_s[i] = opt.update_distribution( x_s[i], ps_s[i], pc_s[i], cm_s[i], ee_s[i], ea_s[i], y_s[i], d_s[i]) self._n_generations += 1 return self._collect(fitness, y)