Source code for pypop7.optimizers.cc.coea

import time

import numpy as np

from pypop7.optimizers.ga.genitor import GENITOR
from pypop7.optimizers.cc import CC


[docs]class COEA(CC): """CoOperative co-Evolutionary Algorithm (COEA). .. note:: This is a *slightly modified* version of `COEA`, where the more common real-valued representation is used for continuous optimization rather than binary-coding used in the original paper. For the suboptimizer, the `GENITOR <https://pypop.readthedocs.io/en/latest/ga/genitor.html>`_ is used, owing to its simplicity. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular setting (`key`): * 'n_individuals' - number of individuals/samples, aka population size (`int`, default: `100`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.cc.coea import COEA >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'x': 3*numpy.ones((2,))} >>> coea = COEA(problem, options) # initialize the optimizer class >>> results = coea.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"COEA: {results['n_function_evaluations']}, {results['best_so_far_y']}") COEA: 5000, 0.43081941641866195 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/ap7n389u>`_ for more details. Attributes ---------- n_individuals : `int` number of individuals/samples, aka population size. References ---------- Potter, M.A. and De Jong, K.A., 2000. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), pp.1-29. https://direct.mit.edu/evco/article/8/1/1/859/Cooperative-Coevolution-An-Architecture-for Potter, M.A. and De Jong, K.A., 1994, October. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature (pp. 249-257). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-58484-6_269 """ def __init__(self, problem, options): CC.__init__(self, problem, options) def initialize(self, arg=None): self.best_so_far_x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary) self.best_so_far_y = self._evaluate_fitness(self.best_so_far_x, arg) sub_optimizers = [] for i in range(self.ndim_problem): problem = {'ndim_problem': 1, # cyclic decomposition for each dimension 'lower_boundary': self.lower_boundary[i], 'upper_boundary': self.upper_boundary[i]} options = {'seed_rng': self.rng_initialization.integers(np.iinfo(np.int64).max), 'n_individuals': self.n_individuals, 'max_runtime': self.max_runtime, 'verbose': False} genitor = GENITOR(problem, options) genitor.start_time = time.time() sub_optimizers.append(genitor) return sub_optimizers, self.best_so_far_y def optimize(self, fitness_function=None, args=None): fitness, is_initialization = CC.optimize(self, fitness_function), True sub_optimizers, y = self.initialize(args) x_s, yy_s, cp_s, yy = [], [], [], [] while not self._check_terminations(): self._print_verbose_info(fitness, y) y = [] if is_initialization: is_initialization = False for i, opt in enumerate(sub_optimizers): if self._check_terminations(): break def sub_function(sub_x): # to define sub-function for each sub-optimizer best_so_far_x = np.copy(self.best_so_far_x) best_so_far_x[i] = sub_x return self._evaluate_fitness(best_so_far_x, args) opt.fitness_function = sub_function x, yy, c_p = opt.initialize() x_s.append(x) yy_s.append(yy) cp_s.append(c_p) y.extend(yy) else: for i, opt in enumerate(sub_optimizers): if self._check_terminations(): break def sub_function(sub_x): # to define sub-function for each sub-optimizer best_so_far_x = np.copy(self.best_so_far_x) best_so_far_x[i] = sub_x return self._evaluate_fitness(best_so_far_x, args) opt.fitness_function = sub_function _, yy, _ = opt.iterate(x_s[i], yy_s[i], cp_s[i]) y.append(yy) self._n_generations += 1 return self._collect(fitness, y)