Source code for pypop7.optimizers.ds.cs

import numpy as np

from pypop7.optimizers.ds.ds import DS


[docs]class CS(DS): """Coordinate Search (CS). .. note:: `CS` is the *earliest* Direct (Pattern) Search method, at least dating back to Fermi (`The Nobel Prize in Physics 1938 <https://www.nobelprize.org/prizes/physics/1938/summary/>`_) and Metropolis (`IEEE Computer Society Computer Pioneer Award 1984 <https://en.wikipedia.org/wiki/Computer_Pioneer_Award>`_). Given that now it is *rarely* used to optimize black-box problems, it is **highly recommended** to first attempt other more advanced methods for large-scale black-box optimization (LSBBO). Its original version needs `3**n - 1` samples for each iteration in the worst case, where `n` is the dimensionality of the problem. Such a worst-case complexity limits its applicability for LSBBO severely. Instead, here we use the **opportunistic** strategy for simplicity. See Algorithm 3 from `Torczon, 1997, SIOPT <https://epubs.siam.org/doi/abs/10.1137/S1052623493250780>`_ for more details. AKA alternating directions, alternating variable search, axial relaxation, local variation, compass search. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size (`float`, default: `1.0`), * 'x' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'gamma' - decreasing factor of global step-size (`float`, default: `0.5`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.ds.cs import CS >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'x': 3*numpy.ones((2,)), ... 'sigma': 1.0, ... 'verbose_frequency': 500} >>> cs = CS(problem, options) # initialize the optimizer class >>> results = cs.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"CS: {results['n_function_evaluations']}, {results['best_so_far_y']}") CS: 5000, 0.1491367032979898 Attributes ---------- gamma : `float` decreasing factor of global step-size. sigma : `float` final global step-size (changed during optimization). x : `array_like` initial (starting) point. References ---------- Larson, J., Menickelly, M. and Wild, S.M., 2019. Derivative-free optimization methods. Acta Numerica, 28, pp.287-404. https://tinyurl.com/4sr2t63j Audet, C. and Hare, W., 2017. Derivative-free and blackbox optimization. Berlin: Springer International Publishing. https://link.springer.com/book/10.1007/978-3-319-68913-5 Torczon, V., 1997. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7(1), pp.1-25. https://epubs.siam.org/doi/abs/10.1137/S1052623493250780 (See Algorithm 3 (Section 4.1) for details.) Fermi, E. and Metropolis N., 1952. Numerical solution of a minimum problem. Los Alamos Scientific Lab., Los Alamos, NM. https://www.osti.gov/servlets/purl/4377177 """ def __init__(self, problem, options): DS.__init__(self, problem, options) self.gamma = options.get('gamma', 0.5) # decreasing factor of global step-size assert self.gamma > 0.0 def initialize(self, args=None, is_restart=False): x = self._initialize_x(is_restart) # initial point y = self._evaluate_fitness(x, args) # fitness return x, y def iterate(self, x=None, args=None): improved, fitness = False, [] for i in range(self.ndim_problem): # to search along each coordinate for sgn in [-1, 1]: # for two opponent directions if self._check_terminations(): return x, fitness xx = np.copy(x) xx[i] += sgn*self.sigma y = self._evaluate_fitness(xx, args) fitness.append(y) if y < self.best_so_far_y: x = xx # greedy / opportunistic improved = True break if not improved: # to decrease step-size if no improvement self.sigma *= self.gamma return x, fitness def restart_reinitialize(self, args=None, x=None, y=None, fitness=None): self._fitness_list.append(self.best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._fitness_list) >= self.stagnation: is_restart_2 = (self._fitness_list[-self.stagnation] - self._fitness_list[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info(fitness, y) self.sigma = np.copy(self._sigma_bak) x, y = self.initialize(args, is_restart) self._fitness_list = [self.best_so_far_y] self._n_generations = 0 self._n_restart += 1 if self.verbose: print(' ....... *** restart *** .......') return x, y def optimize(self, fitness_function=None, args=None): fitness = DS.optimize(self, fitness_function) x, y = self.initialize(args) while True: self._print_verbose_info(fitness, y) x, y = self.iterate(x, args) if self._check_terminations(): break self._n_generations += 1 if self.is_restart: x, y = self.restart_reinitialize(args, x, y, fitness) return self._collect(fitness, y)