Source code for pypop7.optimizers.eda.eda

import numpy as np  # engine for numerical computing

from pypop7.optimizers.core.optimizer import Optimizer


[docs]class EDA(Optimizer): """Estimation of Distribution Algorithms (EDA). This is the **abstract** class for all `EDA` classes. Please use any of its instantiated subclasses to optimize the black-box problem at hand. .. note:: *`EDA` are a modern branch of evolutionary algorithms with some unique advantages in principle*, as recognized in `[Kabán et al., 2016, ECJ] <https://tinyurl.com/mrxpe28y>`_. AKA `probabilistic model-building genetic algorithms (PMBGA) <https://link.springer.com/article/10.1023/B:NACO.0000023416.59689.4e>`_, `iterated density estimation evolutionary algorithms (IDEA) <https://dspace.library.uu.nl/bitstream/handle/1874/1886/2000-15.pdf?sequence=1>`_. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `200`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(self.n_individuals/2)`). Attributes ---------- n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. Methods ------- References ---------- https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=22182 Brookes, D., Busia, A., Fannjiang, C., Murphy, K. and Listgarten, J., 2020, July. A view of estimation of distribution algorithms through the lens of expectation-maximization. In Proceedings of Genetic and Evolutionary Computation Conference Companion (pp. 189-190). ACM. https://dl.acm.org/doi/abs/10.1145/3377929.3389938 Kabán, A., Bootkrajang, J. and Durrant, R.J., 2016. Toward large-scale continuous EDA: A random matrix theory perspective. Evolutionary Computation, 24(2), pp.255-291. https://direct.mit.edu/evco/article-abstract/24/2/255/1016/Toward-Large-Scale-Continuous-EDA-A-Random-Matrix Larrañaga, P. and Lozano, J.A. eds., 2002. Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4615-1539-5 ([Jose Lozano: IEEE Fellow for contributions to EDAs](https://tinyurl.com/sssfsfw8)) Mühlenbein, H. and Mahnig, T., 2001. Evolutionary algorithms: From recombination to search distributions. In Theoretical Aspects of Evolutionary Computing (pp. 135-173). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-662-04448-3_7 Berny, A., 2000, September. Selection and reinforcement learning for combinatorial optimization. In International Conference on Parallel Problem Solving from Nature (pp. 601-610). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-45356-3_59 Bosman, P.A. and Thierens, D., 2000, September. Expanding from discrete to continuous estimation of distribution algorithms: The IDEA. In International Conference on Parallel Problem Solving from Nature (pp. 767-776). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-45356-3_75 Mühlenbein, H., 1997. The equation for response to selection and its use for prediction. Evolutionary Computation, 5(3), pp.303-346. https://tinyurl.com/yt78c786 Baluja, S. and Caruana, R., 1995. Removing the genetics from the standard genetic algorithm. In International Conference on Machine Learning (pp. 38-46). Morgan Kaufmann. https://www.sciencedirect.com/science/article/pii/B9781558603776500141 """ def __init__(self, problem, options): Optimizer.__init__(self, problem, options) if self.n_individuals is None: # number of offspring, aka offspring population size self.n_individuals = 200 if self.n_parents is None: # number of parents, aka parental population size self.n_parents = int(self.n_individuals/2) self._n_generations = 0 self._n_restart = 0 self._printed_evaluations = self.n_function_evaluations def initialize(self): raise NotImplementedError def iterate(self): raise NotImplementedError def _print_verbose_info(self, fitness, y, is_print=False): if y is not None and self.saving_fitness: if not np.isscalar(y): fitness.extend(y) else: fitness.append(y) if self.verbose: is_verbose = self._printed_evaluations != self.n_function_evaluations # to avoid repeated printing is_verbose_1 = (not self._n_generations % self.verbose) and is_verbose is_verbose_2 = self.termination_signal > 0 and is_verbose is_verbose_3 = is_print and is_verbose if is_verbose_1 or is_verbose_2 or is_verbose_3: info = ' * Generation {:d}: best_so_far_y {:7.5e}, min(y) {:7.5e} & Evaluations {:d}' print(info.format(self._n_generations, self.best_so_far_y, np.min(y), self.n_function_evaluations)) self._printed_evaluations = self.n_function_evaluations def _collect(self, fitness=None, y=None): self._print_verbose_info(fitness, y) results = Optimizer._collect(self, fitness) results['_n_generations'] = self._n_generations results['_n_restart'] = self._n_restart return results