Source code for pypop7.optimizers.eda.emna

import numpy as np

from pypop7.optimizers.eda.umda import UMDA


[docs]class EMNA(UMDA): """Estimation of Multivariate Normal Algorithm (EMNA). .. note:: `EMNA` learns the *full* covariance matrix of the Gaussian sampling distribution, resulting in a *cubic* time complexity w.r.t. each sampling. Therefore, it is **rarely** used for large-scale black-box optimization (LSBBO). It is **highly recommended** to first attempt other more advanced methods for LSBBO. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring, offspring population size (`int`, default: `200`), * 'n_parents' - number of parents, parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.eda.emna import EMNA >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> emna = EMNA(problem, options) # initialize the optimizer class >>> results = emna.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"EMNA: {results['n_function_evaluations']}, {results['best_so_far_y']}") EMNA: 5000, 0.008375142194038284 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/2p8xksyy>`_ for more details. Attributes ---------- n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. References ---------- LarraƱaga, P. and Lozano, J.A. eds., 2002. Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4615-1539-5 Larranaga, P., Etxeberria, R., Lozano, J.A. and Pena, J.M., 2000. Optimization in continuous domains by learning and simulation of Gaussian networks. Technical Report, Department of Computer Science and Artificial Intelligence, University of the Basque Country. https://tinyurl.com/3bw6n3x4 """ def __init__(self, problem, options): UMDA.__init__(self, problem, options) def iterate(self, x=None, y=None, args=None): order = np.argsort(y)[:self.n_parents] mean = np.mean(x[order], axis=0) cov = np.cov(np.transpose(x[order])) for i in range(self.n_individuals): if self._check_terminations(): break x[i] = self.rng_optimization.multivariate_normal(mean, cov) y[i] = self._evaluate_fitness(x[i], args) return x, y