Source code for pypop7.optimizers.ep.lep

import numpy as np  # engine for numerical computing
from scipy.stats import levy_stable

from pypop7.optimizers.ep.cep import CEP


[docs]class LEP(CEP): """Lévy distribution based Evolutionary Programming (LEP). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `100`), * 'q' - number of opponents for pairwise comparisons (`int`, default: `10`), * 'tau' - learning rate of individual step-sizes self-adaptation (`float`, default: `1.0/np.sqrt(2.0*np.sqrt(problem['ndim_problem']))`), * 'tau_apostrophe' - learning rate of individual step-sizes self-adaptation (`float`, default: `1.0/np.sqrt(2.0*problem['ndim_problem'])`. Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.ep.lep import LEP >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'sigma': 0.1} >>> lep = LEP(problem, options) # initialize the optimizer class >>> results = lep.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"LEP: {results['n_function_evaluations']}, {results['best_so_far_y']}") LEP: 5000, 0.0359694938656471 For its correctness checking, refer to `this code-based repeatability report <https://tinyurl.com/2dc6ym6j>`_ for more details. Attributes ---------- n_individuals : `int` number of offspring, aka offspring population size. q : `int` number of opponents for pairwise comparisons. sigma : `float` initial global step-size, aka mutation strength. tau : `float` learning rate of individual step-sizes self-adaptation. tau_apostrophe : `float` learning rate of individual step-sizes self-adaptation. References ---------- Lee, C.Y. and Yao, X., 2004. Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Transactions on Evolutionary Computation, 8(1), pp.1-13. https://ieeexplore.ieee.org/document/1266370 """ def __init__(self, problem, options): CEP.__init__(self, problem, options) def iterate(self, x=None, sigmas=None, y=None, xx=None, ss=None, yy=None, args=None): for i in range(self.n_individuals): if self._check_terminations(): return x, sigmas, y, xx, ss, yy ss[i] = sigmas[i]*np.exp(self.tau_apostrophe*self.rng_optimization.standard_normal( size=(self.ndim_problem,)) + self.tau*self.rng_optimization.standard_normal( size=(self.ndim_problem,))) xx[i] = x[i] + ss[i]*levy_stable.rvs(alpha=1.8, beta=1, size=(self.ndim_problem,), random_state=self.rng_optimization) yy[i] = self._evaluate_fitness(xx[i], args) new_x = np.vstack((xx, x)) new_sigmas = np.vstack((ss, sigmas)) new_y = np.hstack((yy, y)) n_win = np.zeros((2*self.n_individuals,)) # number of win for i in range(2*self.n_individuals): for j in self.rng_optimization.choice([k for k in range(2*self.n_individuals) if k != i], size=self.q, replace=False): if new_y[i] < new_y[j]: n_win[i] += 1 order = np.argsort(-n_win)[:self.n_individuals] x[:self.n_individuals] = new_x[order] sigmas[:self.n_individuals] = new_sigmas[order] y[:self.n_individuals] = new_y[order] self._n_generations += 1 return x, sigmas, y, xx, ss, yy