Source code for pypop7.optimizers.es.ccmaes2016

import numpy as np
from scipy.linalg import solve_triangular

from pypop7.optimizers.es.es import ES
from pypop7.optimizers.es.opoa2015 import cholesky_update


[docs]class CCMAES2016(ES): """Cholesky-CMA-ES 2016 (CCMAES2016). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.ccmaes2016 import CCMAES2016 >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> ccmaes2016 = CCMAES2016(problem, options) # initialize the optimizer class >>> results = ccmaes2016.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"CCMAES2016: {results['n_function_evaluations']}, {results['best_so_far_y']}") CCMAES2016: 5000, 2.614231350522262e-21 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/3kbet9tn>`_ for more details. References ---------- Krause, O., Arbonès, D.R. and Igel, C., 2016. CMA-ES with optimal covariance update and storage complexity. Advances in Neural Information Processing Systems, 29, pp.370-378. https://proceedings.neurips.cc/paper/2016/hash/289dff07669d7a23de0ef88d2f7129e7-Abstract.html """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.options = options self.c_s, self.d = None, None self.c_c, self.c_1, self.c_mu = None, None, None def initialize(self, is_restart=False): x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution a = np.diag(np.ones((self.ndim_problem,))) # cholesky factor p_s = np.zeros((self.ndim_problem,)) # evolution path for CSA p_c = np.zeros((self.ndim_problem,)) # evolution path for CMA y = np.empty((self.n_individuals,)) # fitness (no evaluation) self.c_s = self.options.get('c_s', self._mu_eff/(self.ndim_problem + self._mu_eff)) self.d = self.options.get('d', 1.0 + np.sqrt(self._mu_eff/self.ndim_problem)) self.c_c = self.options.get('c_c', (4.0 + self._mu_eff/self.ndim_problem)/( self.ndim_problem + 4.0 + 2.0*self._mu_eff/self.ndim_problem)) self.c_1 = self.options.get('c_1', 2.0/(np.square(self.ndim_problem) + self._mu_eff)) self.c_mu = self.options.get('c_mu', self._mu_eff/(np.square(self.ndim_problem) + self._mu_eff)) return x, mean, a, p_s, p_c, y def iterate(self, x=None, mean=None, a=None, y=None, args=None): for k in range(self.n_individuals): if self._check_terminations(): return x, y x[k] = mean + self.sigma*np.dot(a, self.rng_optimization.standard_normal((self.ndim_problem,))) y[k] = self._evaluate_fitness(x[k], args) return x, y def _update_distribution(self, x=None, mean=None, a=None, p_s=None, p_c=None, y=None): order = np.argsort(y)[:self.n_parents] mean_bak = np.dot(self._w, x[order]) mean_diff = (mean_bak - mean)/self.sigma p_c = (1.0 - self.c_c)*p_c + np.sqrt(self.c_c*(2.0 - self.c_c)*self._mu_eff)*mean_diff p_s = (1.0 - self.c_s)*p_s + np.sqrt(self.c_s*(2.0 - self.c_s)*self._mu_eff)*solve_triangular( a, mean_diff, lower=True) a *= np.sqrt(1.0 - self.c_1 - self.c_mu) a = cholesky_update(a, np.sqrt(self.c_1)*p_c, False) for i in range(self.n_parents): a = cholesky_update(a, np.sqrt(self.c_mu*self._w[i])*(x[order[i]] - mean)/self.sigma, False) self.sigma *= np.exp(self.c_s/self.d*(np.sqrt(np.dot(p_s, p_s))/self._e_chi - 1.0)) return mean_bak, a, p_s, p_c def restart_reinitialize(self, x=None, mean=None, a=None, p_s=None, p_c=None, y=None): if self.is_restart and ES.restart_reinitialize(self, y): x, mean, a, p_s, p_c, y = self.initialize(True) return x, mean, a, p_s, p_c, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, a, p_s, p_c, y = self.initialize() while not self.termination_signal: # sample and evaluate offspring population x, y = self.iterate(x, mean, a, y, args) if self._check_terminations(): break mean, a, p_s, p_c = self._update_distribution(x, mean, a, p_s, p_c, y) self._print_verbose_info(fitness, y) self._n_generations += 1 x, mean, a, p_s, p_c, y = self.restart_reinitialize(x, mean, a, p_s, p_c, y) results = self._collect(fitness, y, mean) results['p_s'] = p_s results['p_c'] = p_c return results