Source code for pypop7.optimizers.es.csaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES
from pypop7.optimizers.es.dsaes import DSAES


[docs]class CSAES(DSAES): """Cumulative Step-size self-Adaptation Evolution Strategy (CSAES). .. note:: `CSAES` adapts all the *individual* step-sizes on-the-fly with a *relatively small* population, according to the well-known `CSA <http://link.springer.com/chapter/10.1007/3-540-58484-6_263>`_ rule (a.k.a. cumulative (evolution) path-length control) from the Evolutionary Computation community. The default setting (i.e., using a `small` population) can result in *relatively fast* (local) convergence, but perhaps with the risk of getting trapped in suboptima on multi-modal fitness landscape. Therefore, it is recommended to first attempt more advanced ES variants (e.g., `LMCMA`, `LMMAES`) for large-scale black-box optimization. Here we include `CSAES` mainly for *benchmarking* and *theoretical* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(np.floor(3*np.log(problem['ndim_problem'])))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/4)`), * 'lr_sigma' - learning rate of global step-size adaptation (`float`, default: `np.sqrt(options['n_parents']/(problem['ndim_problem'] + options['n_parents']))`). Examples -------- Use the black-box optimizer `CSAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.csaes import CSAES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 0.1} # global step-size may need to be tuned >>> csaes = CSAES(problem, options) # to initialize the optimizer class >>> results = csaes.optimize() # to run the optimization/evolution process >>> # to return the number of function evaluations and best-so-far fitness >>> print(f"CSAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") CSAES: 5000, 0.010143683086819875 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/2s4ctvdw>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. lr_sigma : `float` learning rate of global step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` initial global step-size, aka mutation strength. References ---------- Hansen, N., Arnold, D.V. and Auger, A., 2015. `Evolution strategies. <https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44>`_ In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J. and Koumoutsakos, P., 2004. `Learning probability distributions in continuous evolutionary algorithms–a comparative review. <https://link.springer.com/article/10.1023/B:NACO.0000023416.59689.4e>`_ Natural Computing, 3, pp.77-112. Ostermeier, A., Gawelczyk, A. and Hansen, N., 1994, October. `Step-size adaptation based on non-local use of selection information <http://link.springer.com/chapter/10.1007/3-540-58484-6_263>`_ In International Conference on Parallel Problem Solving from Nature (pp. 189-198). Springer, Berlin, Heidelberg. """ def __init__(self, problem, options): if options.get('n_individuals') is None: # number of offspring, aka offspring population size options['n_individuals'] = 4 + int(np.floor(3*np.log(problem['ndim_problem']))) if options.get('n_parents') is None: # number of parents, aka parental population size options['n_parents'] = int(options['n_individuals']/4) if options.get('lr_sigma') is None: # learning rate of global step-size adaptation options['lr_sigma'] = np.sqrt(options['n_parents']/( problem['ndim_problem'] + options['n_parents'])) DSAES.__init__(self, problem, options) self._s_1 = None self._s_2 = None # set E[||N(0,I)||]: expectation of chi distribution self._e_chi = np.sqrt(self.ndim_problem)*( 1.0 - 1.0/(4.0*self.ndim_problem) + 1.0/(21.0*np.power(self.ndim_problem, 2))) def initialize(self, is_restart=False): self._s_1 = 1.0 - self.lr_sigma self._s_2 = np.sqrt(self.lr_sigma*(2.0 - self.lr_sigma)*self.n_parents) self._axis_sigmas = self._sigma_bak*np.ones((self.ndim_problem,)) z = np.empty((self.n_individuals, self.ndim_problem)) # noise for offspring population x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution s = np.zeros((self.ndim_problem,)) # evolution path y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._list_initial_mean.append(np.copy(mean)) return z, x, mean, s, y def iterate(self, z=None, x=None, mean=None, y=None, args=None): for k in range(self.n_individuals): # to sample offspring population if self._check_terminations(): return z, x, y z[k] = self.rng_optimization.standard_normal((self.ndim_problem,)) x[k] = mean + self._axis_sigmas*z[k] y[k] = self._evaluate_fitness(x[k], args) return z, x, y def _update_distribution(self, z=None, x=None, s=None, y=None): order = np.argsort(y)[:self.n_parents] s = self._s_1*s + self._s_2*np.mean(z[order], axis=0) sigmas_1 = np.power(np.exp(np.abs(s)/self._e_hnd - 1.0), 1.0/(3.0*self.ndim_problem)) sigmas_2 = np.power(np.exp(np.linalg.norm(s)/self._e_chi - 1.0), self.lr_sigma/(1.0 + np.sqrt(self.n_parents/self.ndim_problem))) self._axis_sigmas *= (sigmas_1*sigmas_2) mean = np.mean(x[order], axis=0) return s, mean def restart_reinitialize(self, z=None, x=None, mean=None, s=None, y=None): if not self.is_restart: return z, x, mean, s, y min_y = np.min(y) if min_y < self._list_fitness[-1]: self._list_fitness.append(min_y) else: self._list_fitness.append(self._list_fitness[-1]) is_restart_1, is_restart_2 = np.all(self._axis_sigmas < self.sigma_threshold), False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info([], y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.n_individuals *= 2 self.n_parents = int(self.n_individuals/4) self.lr_sigma = np.sqrt(self.n_parents/(self.ndim_problem + self.n_parents)) z, x, mean, s, y = self.initialize(True) self._list_fitness = [np.Inf] return z, x, mean, s, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) z, x, mean, s, y = self.initialize() while True: # sample and evaluate offspring population z, x, y = self.iterate(z, x, mean, y, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) self._n_generations += 1 s, mean = self._update_distribution(z, x, s, y) z, x, mean, s, y = self.restart_reinitialize(z, x, mean, s, y) results = self._collect(fitness, y, mean) results['s'] = s results['_axis_sigmas'] = self._axis_sigmas return results