Source code for pypop7.optimizers.es.lmcmaes

import numpy as np

from pypop7.optimizers.es.es import ES


[docs]class LMCMAES(ES): """Limited-Memory Covariance Matrix Adaptation Evolution Strategy (LMCMAES). .. note:: For perhaps better performance, please use its lateset version called `LMCMA <https://tinyurl.com/mry5dw36>`_. Here we include it mainly for *benchmarking* purpose. Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'm' - number of direction vectors (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_steps' - target number of generations between vectors (`int`, default: `options['m']`), * 'c_c' - learning rate for evolution path update (`float`, default: `1.0/options['m']`). * 'c_1' - learning rate for covariance matrix adaptation (`float`, default: `1.0/(10.0*np.log(problem['ndim_problem'] + 1.0))`), * 'c_s' - learning rate for population success rule (`float`, default: `0.3`), * 'd_s' - delay rate for population success rule (`float`, default: `1.0`), * 'z_star' - target success rate for population success rule (`float`, default: `0.25`), * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.lmcmaes import LMCMAES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> lmcmaes = LMCMAES(problem, options) # initialize the optimizer class >>> results = lmcmaes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"LMCMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") LMCMAES: 5000, 4.590739937885748e-16 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/yc7wyew4>`_ for more details. Attributes ---------- c_c : `float` learning rate for evolution path update. c_s : `float` learning rate for population success rule. c_1 : `float` learning rate for covariance matrix adaptation. d_s : `float` delay rate for population success rule. m : `int` number of direction vectors. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. n_steps : `int` target number of generations between vectors. sigma : `float` initial global step-size, aka mutation strength. z_star : `float` target success rate for population success rule. References ---------- Loshchilov, I., 2014, July. A computationally efficient limited memory CMA-ES for large scale optimization. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 397-404). ACM. https://dl.acm.org/doi/abs/10.1145/2576768.2598294 See the official C++ version from Loshchilov: https://sites.google.com/site/lmcmaeses/ """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.m = options.get('m', 4 + int(3*np.log(self.ndim_problem))) # number of direction vectors self.n_steps = options.get('n_steps', self.m) # target number of generations between vectors self.c_c = options.get('c_c', 1.0/self.m) # learning rate for evolution path update self.c_1 = options.get('c_1', 1.0/(10.0*np.log(self.ndim_problem + 1.0))) self.c_s = options.get('c_s', 0.3) # learning rate for population success rule (PSR) self.d_s = options.get('d_s', 1.0) # damping parameter for PSR self.z_star = options.get('z_star', 0.25) # target success rate for PSR self._a = np.sqrt(1.0 - self.c_1) self._c = 1.0/np.sqrt(1.0 - self.c_1) self._bd_1 = np.sqrt(1.0 - self.c_1) self._bd_2 = self.c_1/(1.0 - self.c_1) self._p_c_1 = 1.0 - self.c_c self._p_c_2 = None self._j = None self._l = None self._it = None self._rr = None # for PSR def initialize(self, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population p_c = np.zeros((self.ndim_problem,)) # evolution path s = 0.0 # for PSR of global step-size adaptation vm = np.empty((self.m, self.ndim_problem)) pm = np.empty((self.m, self.ndim_problem)) b = np.empty((self.m,)) d = np.empty((self.m,)) y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._p_c_2 = np.sqrt(self.c_c*(2.0 - self.c_c)*self._mu_eff) self._rr = np.arange(self.n_individuals*2, 0, -1) - 1 self._j = [None]*self.m self._l = [None]*self.m self._it = 0 return mean, x, p_c, s, vm, pm, b, d, y def _a_z(self, z=None, pm=None, vm=None, b=None): # Algorithm 3 Az() x = np.copy(z) for t in range(self._it): x = self._a*x + b[self._j[t]]*np.dot(vm[self._j[t]], z)*pm[self._j[t]] return x def iterate(self, mean=None, x=None, pm=None, vm=None, y=None, b=None, args=None): sign, a_z = 1, np.empty((self.ndim_problem,)) # for mirrored sampling for k in range(self.n_individuals): if self._check_terminations(): return x, y if sign == 1: z = self.rng_optimization.standard_normal((self.ndim_problem,)) a_z = self._a_z(z, pm, vm, b) x[k] = mean + sign*self.sigma*a_z y[k] = self._evaluate_fitness(x[k], args) sign *= -1 # sampling in the opposite direction for mirrored sampling return x, y def _a_inv_z(self, v=None, vm=None, d=None, i=None): # Algorithm 4 Ainvz() x = np.copy(v) for t in range(0, i): x = self._c*x - d[self._j[t]]*np.dot(vm[self._j[t]], x)*vm[self._j[t]] return x def _update_distribution(self, mean=None, x=None, p_c=None, s=None, vm=None, pm=None, b=None, d=None, y=None, y_bak=None): mean_bak = np.dot(self._w, x[np.argsort(y)[:self.n_parents]]) p_c = self._p_c_1*p_c + self._p_c_2*(mean_bak - mean)/self.sigma i_min = 1 if self._n_generations < self.m: self._j[self._n_generations] = self._n_generations else: d_min = self._l[self._j[i_min]] - self._l[self._j[i_min - 1]] for j in range(2, self.m): d_cur = self._l[self._j[j]] - self._l[self._j[j - 1]] if d_cur < d_min: d_min, i_min = d_cur, j # start from 0 if all pairwise distances exceed `self.n_steps` i_min = 0 if d_min >= self.n_steps else i_min # update indexes of evolution paths (`self._j[i_min]` is index of evolution path needed to delete) updated = self._j[i_min] for j in range(i_min, self.m - 1): self._j[j] = self._j[j + 1] self._j[self.m - 1] = updated self._it = np.minimum(self._n_generations + 1, self.m) self._l[self._j[self._it - 1]] = self._n_generations # to update its generation pm[self._j[self._it - 1]] = p_c # to add the latest evolution path # since `self._j[i_min]` is deleted, all vectors (from vm) depending on it need to be computed again for i in range(0 if i_min == 1 else i_min, self._it): vm[self._j[i]] = self._a_inv_z(pm[self._j[i]], vm, d, i) v_n = np.dot(vm[self._j[i]], vm[self._j[i]]) bd_3 = np.sqrt(1.0 + self._bd_2*v_n) b[self._j[i]] = self._bd_1/v_n*(bd_3 - 1.0) d[self._j[i]] = 1.0/(self._bd_1*v_n)*(1.0 - 1.0/bd_3) if self._n_generations > 0: # for population success rule (PSR) r = np.argsort(np.hstack((y, y_bak))) z_psr = np.sum(self._rr[r < self.n_individuals] - self._rr[r >= self.n_individuals]) z_psr = z_psr/np.power(self.n_individuals, 2) - self.z_star s = (1.0 - self.c_s)*s + self.c_s*z_psr self.sigma *= np.exp(s/self.d_s) return mean_bak, p_c, s, vm, pm, b, d def restart_reinitialize(self, mean=None, x=None, p_c=None, s=None, vm=None, pm=None, b=None, d=None, y=None): if self.is_restart and ES.restart_reinitialize(self, y): mean, x, p_c, s, vm, pm, b, d, y = self.initialize(True) self.d_s *= 2.0 return mean, x, p_c, s, vm, pm, b, d, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) mean, x, p_c, s, vm, pm, b, d, y = self.initialize() while not self.termination_signal: y_bak = np.copy(y) # sample and evaluate offspring population x, y = self.iterate(mean, x, pm, vm, y, b, args) if self._check_terminations(): break mean, p_c, s, vm, pm, b, d = self._update_distribution( mean, x, p_c, s, vm, pm, b, d, y, y_bak) self._print_verbose_info(fitness, y) self._n_generations += 1 mean, x, p_c, s, vm, pm, b, d, y = self.restart_reinitialize( mean, x, p_c, s, vm, pm, b, d, y) results = self._collect(fitness, y, mean) results['p_c'] = p_c results['s'] = s return results