Source code for pypop7.optimizers.es.maes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES


[docs]class MAES(ES): """Matrix Adaptation Evolution Strategy (MAES). .. note:: `MAES` is a powerful *simplified* version of the well-established `CMA-ES` algorithm nearly without significant performance loss, designed in 2017 by `Beyer <https://homepages.fhv.at/hgb/>`_ and `Sendhoff <https://tinyurl.com/26szwuaa>`_. One obvious advantage of such a simplification is to help better understand the underlying working principles (e.g., **invariance** and **unbias**) of `CMA-ES`, which are often thought to be rather complex for newcomers. It is **highly recommended** to first attempt more advanced ES variants (e.g., `LMCMA`, `LMMAES`) for large-scale black-box optimization, since `MAES` has a *cubic* time complexity (w.r.t. each sampling). Note that another improved version called `FMAES` provides a *relatively more efficient* implementation for `MAES` with *quadratic* time complexity (w.r.t. each sampling). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer `MAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.maes import MAES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> maes = MAES(problem, options) # initialize the optimizer class >>> results = maes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"MAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") MAES: 5000, 2.129367016460251e-19 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/3zvve79b>`_ for more details. Attributes ---------- mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength. References ---------- Beyer, H.G., 2020, July. `Design principles for matrix adaptation evolution strategies. <https://dl.acm.org/doi/abs/10.1145/3377929.3389870>`_ In Proceedings of ACM Conference on Genetic and Evolutionary Computation Companion (pp. 682-700). Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019. `Large scale black-box optimization by limited-memory matrix adaptation. <https://ieeexplore.ieee.org/abstract/document/8410043>`_ IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358. Beyer, H.G. and Sendhoff, B., 2017. `Simplify your covariance matrix adaptation evolution strategy. <https://ieeexplore.ieee.org/document/7875115>`_ IEEE Transactions on Evolutionary Computation, 21(5), pp.746-759. See the official Matlab version from Prof. Beyer: https://homepages.fhv.at/hgb/downloads/ForDistributionFastMAES.tar """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.options = options self.c_s = None self.c_1 = None self.c_w = None self.d_sigma = None self._alpha_cov = 2.0 self._s_1 = None self._s_2 = None self._fast_version = options.get('_fast_version', False) if not self._fast_version: self._diag_one = np.eye(self.ndim_problem) def _set_c_w(self): return np.minimum(1.0 - self.c_1, self._alpha_cov*(self._mu_eff + 1.0/self._mu_eff - 2.0) / (np.power(self.ndim_problem + 2.0, 2) + self._alpha_cov*self._mu_eff/2.0)) def _set_d_sigma(self): return 1.0 + self.c_s + 2.0*np.maximum(0.0, np.sqrt((self._mu_eff - 1.0)/(self.ndim_problem + 1.0)) - 1.0) def initialize(self, is_restart=False): self.c_s = self.options.get('c_s', (self._mu_eff + 2.0)/(self._mu_eff + self.ndim_problem + 5.0)) self.c_1 = self.options.get('c_1', self._alpha_cov/(np.power(self.ndim_problem + 1.3, 2) + self._mu_eff)) self.c_w = self.options.get('c_w', self._set_c_w()) self.d_sigma = self.options.get('d_sigma', self._set_d_sigma()) self._s_1 = 1.0 - self.c_s self._s_2 = np.sqrt(self._mu_eff*self.c_s*(2.0 - self.c_s)) z = np.empty((self.n_individuals, self.ndim_problem)) # Gaussian noise for mutation d = np.empty((self.n_individuals, self.ndim_problem)) # search directions mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution s = np.zeros((self.ndim_problem,)) # evolution path tm = np.eye(self.ndim_problem) # transformation matrix y = np.empty((self.n_individuals,)) # fitness (no evaluation) self._list_initial_mean.append(np.copy(mean)) return z, d, mean, s, tm, y def iterate(self, z=None, d=None, mean=None, tm=None, y=None, args=None): for k in range(self.n_individuals): # to sample offspring population if self._check_terminations(): return z, d, y z[k] = self.rng_optimization.standard_normal((self.ndim_problem,)) d[k] = np.dot(tm, z[k]) y[k] = self._evaluate_fitness(mean + self.sigma*d[k], args) return z, d, y def _update_distribution(self, z=None, d=None, mean=None, s=None, tm=None, y=None): order = np.argsort(y) d_w, z_w, zz_w = np.zeros((self.ndim_problem,)), np.zeros((self.ndim_problem,)), None if not self._fast_version: zz_w = np.zeros((self.ndim_problem, self.ndim_problem)) for k in range(self.n_parents): d_w += self._w[k]*d[order[k]] z_w += self._w[k]*z[order[k]] if not self._fast_version: zz_w += self._w[k]*np.outer(z[order[k]], z[order[k]]) # update distribution mean mean += self.sigma*d_w # update evolution path (s) and transformation matrix (M) s = self._s_1*s + self._s_2*z_w if not self._fast_version: tm_1 = self.c_1*(np.outer(s, s) - self._diag_one) tm_2 = self.c_w*(zz_w - self._diag_one) tm += 0.5*np.dot(tm, tm_1 + tm_2) else: tm = (1.0 - 0.5*(self.c_1 + self.c_w))*tm + (0.5*self.c_1)*np.dot( np.dot(tm, s[:, np.newaxis]), s[np.newaxis, :]) for k in range(self.n_parents): tm += (0.5*self.c_w)*self._w[k]*np.outer(d[order[k]], z[order[k]]) # update global step-size self.sigma *= np.exp(self.c_s/self.d_sigma*(np.linalg.norm(s)/self._e_chi - 1.0)) return mean, s, tm def restart_reinitialize(self, z=None, d=None, mean=None, s=None, tm=None, y=None): if ES.restart_reinitialize(self, y): z, d, mean, s, tm, y = self.initialize(True) return z, d, mean, s, tm, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) z, d, mean, s, tm, y = self.initialize() while not self.termination_signal: # sample and evaluate offspring population z, d, y = self.iterate(z, d, mean, tm, y, args) if self._check_terminations(): break mean, s, tm = self._update_distribution(z, d, mean, s, tm, y) self._print_verbose_info(fitness, y) self._n_generations += 1 if self.is_restart: z, d, mean, s, tm, y = self.restart_reinitialize(z, d, mean, s, tm, y) results = self._collect(fitness, y, mean) results['s'] = s # by default, do NOT save transformation matrix of search distribution in order to save memory, # owing to its *quadratic* space complexity return results