Source code for pypop7.optimizers.es.opoa2010

import numpy as np

from pypop7.optimizers.es.opoc2009 import OPOC2009


[docs]class OPOA2010(OPOC2009): """(1+1)-Active-CMA-ES 2010 (OPOA2010). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. Examples -------- Use the optimizer `OPOA2010` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.opoa2010 import OPOA2010 >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> opoa2010 = OPOA2010(problem, options) # initialize the optimizer class >>> results = opoa2010.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"OPOA2010: {results['n_function_evaluations']}, {results['best_so_far_y']}") OPOA2010: 5000, 6.573983554197426e-16 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/26tad82p>`_ for more details. References ---------- Arnold, D.V. and Hansen, N., 2010, July. Active covariance matrix adaptation for the (1+1)-CMA-ES. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 385-392). ACM. https://dl.acm.org/doi/abs/10.1145/1830483.1830556 """ def __init__(self, problem, options): OPOC2009.__init__(self, problem, options) self.c_m = options.get('c_m', 0.4/(np.power(self.ndim_problem, 1.6) + 1.0)) self.k = options.get('k', 5) self._ancestors = [] def initialize(self, args=None, is_restart=False): mean, y, a, a_i, best_so_far_y, p_s, p_c = OPOC2009.initialize(self, args, is_restart) return mean, y, a, a_i, best_so_far_y, p_s, p_c def iterate(self, mean=None, a=None, a_i=None, best_so_far_y=None, p_s=None, p_c=None, args=None): # sample and evaluate only one offspring z = self.rng_optimization.standard_normal((self.ndim_problem,)) x = mean + self.sigma*np.dot(a, z) y = self._evaluate_fitness(x, args) l_s = 1 if y <= best_so_far_y else 0 p_s = (1.0 - self.c_p)*p_s + self.c_p*l_s self.sigma *= np.exp(self.lr_sigma*(p_s - self.p_ts)/(1.0 - self.p_ts)) if y <= best_so_far_y: self._ancestors.append(y) mean, best_so_far_y = x, y if p_s < self.p_t: p_c = (1.0 - self.c_c)*p_c + np.sqrt(self.c_c*(2.0 - self.c_c))*np.dot(a, z) alpha = 1.0 - self.c_cov else: p_c *= 1.0 - self.c_c alpha = 1.0 - self.c_cov + self.c_cov*self.c_c*(2.0 - self.c_c) w = np.dot(a_i, p_c) w_power = np.dot(w, w) alpha = np.sqrt(alpha) beta = alpha/w_power*(np.sqrt(1.0 + self.c_cov/(1.0 - self.c_cov)*w_power) - 1.0) a = alpha*a + beta*np.dot(p_c[:, np.newaxis], w[np.newaxis, :]) a_i = 1.0/alpha*a_i - beta/(np.power(alpha, 2) + alpha*beta*w_power)*np.dot( w[:, np.newaxis], np.dot(w[np.newaxis, :], a_i)) if len(self._ancestors) >= self.k and y > self._ancestors[-self.k]: del self._ancestors[0] z_power = np.dot(z, z) if 1.0 < self.c_m*(2.0*z_power - 1.0): c_m = 1.0/(2.0*z_power - 1.0) else: c_m = self.c_m alpha = np.sqrt(1.0 + c_m) beta = alpha/z_power*(np.sqrt(1.0 - self.c_m/(1.0 - self.c_m)*z_power) - 1.0) a = alpha*a + beta*np.dot(np.dot(a, z[:, np.newaxis]), z[np.newaxis, :]) a_i = 1.0/alpha*a_i - beta/(np.power(alpha, 2) + alpha*beta*z_power)*np.dot( z[:, np.newaxis], np.dot(z[np.newaxis, :], a_i)) return mean, y, a, a_i, best_so_far_y, p_s, p_c def restart_reinitialize(self, mean=None, y=None, a=None, a_i=None, best_so_far_y=None, p_s=None, p_c=None, fitness=None, args=None): self._list_fitness.append(best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info(fitness, y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.sigma = np.copy(self._sigma_bak) mean, y, a, a_i, best_so_far_y, p_s, p_c = self.initialize(args, True) self._list_fitness = [best_so_far_y] self._ancestors = [] return mean, y, a, a_i, best_so_far_y, p_s, p_c