Source code for pypop7.optimizers.es.opoa2015

import numpy as np
import numba as nb

from pypop7.optimizers.es.es import ES


@nb.jit(nopython=True)
def cholesky_update(rm, z, downdate):
    # https://github.com/scipy/scipy/blob/d20f92fce9f1956bfa65365feeec39621a071932/
    #     scipy/linalg/_decomp_cholesky_update.py
    rm, z, alpha, beta = rm.T, z, np.empty_like(z), np.empty_like(z)
    alpha[-1], beta[-1] = 1.0, 1.0
    sign = -1 if downdate else 1
    for r in range(len(z)):
        a = z[r]/rm[r, r]
        alpha[r] = alpha[r - 1] + sign*np.power(a, 2)
        beta[r] = np.sqrt(alpha[r])
        z[r + 1:] -= a*rm[r, r + 1:]
        rm[r, r:] *= beta[r]/beta[r - 1]
        rm[r, r + 1:] += sign*a/(beta[r]*beta[r - 1])*z[r + 1:]
    return rm.T


[docs]class OPOA2015(ES): """(1+1)-Active-CMA-ES 2015 (OPOA2015). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`), and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.opoa2015 import OPOA2015 >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> opoa2015 = OPOA2015(problem, options) # initialize the optimizer class >>> results = opoa2015.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"OPOA2015: {results['n_function_evaluations']}, {results['best_so_far_y']}") OPOA2015: 5000, 5.955151843487958e-17 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/mrxu4suj>`_ for more details. References ---------- Krause, O. and Igel, C., 2015, January. A more efficient rank-one covariance matrix update for evolution strategies. In Proceedings of ACM Conference on Foundations of Genetic Algorithms (pp. 129-136). https://dl.acm.org/doi/abs/10.1145/2725494.2725496 """ def __init__(self, problem, options): options['n_individuals'] = 1 # mandatory setting options['n_parents'] = 1 # mandatory setting ES.__init__(self, problem, options) if self.lr_sigma is None: self.lr_sigma = 1.0/(1.0 + self.ndim_problem/2.0) self.p_ts = options.get('p_ts', 2.0/11.0) self.c_p = options.get('c_p', 1.0/12.0) self.c_c = options.get('c_c', 2.0/(self.ndim_problem + 2.0)) self.c_cov = options.get('c_cov', 2.0/(np.power(self.ndim_problem, 2) + 6.0)) self.p_t = options.get('p_t', 0.44) self.c_m = options.get('c_m', 0.4/(np.power(self.ndim_problem, 1.6) + 1.0)) self.k = options.get('k', 5) self._ancestors = [] self._c_cf = 1.0 - self.c_cov + self.c_cov*self.c_c*(2.0 - self.c_c) def initialize(self, args=None, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution y = self._evaluate_fitness(mean, args) # fitness cf = np.diag(np.ones(self.ndim_problem,)) # Cholesky factorization best_so_far_y, p_s = np.copy(y), self.p_ts p_c = np.zeros((self.ndim_problem,)) # evolution path return mean, y, cf, best_so_far_y, p_s, p_c def _cholesky_update(self, cf=None, alpha=None, beta=None, v=None): # triangular rank-one update assert self.ndim_problem == v.size if beta < 0: downdate, beta = True, -beta else: downdate = False return cholesky_update(np.sqrt(alpha)*cf, np.sqrt(beta)*v, downdate) def iterate(self, mean=None, cf=None, best_so_far_y=None, p_s=None, p_c=None, args=None): # sample and evaluate only one offspring z = self.rng_optimization.standard_normal((self.ndim_problem,)) cf_z = np.dot(cf, z) x = mean + self.sigma*cf_z y = self._evaluate_fitness(x, args) if y <= best_so_far_y: self._ancestors.append(y) mean, best_so_far_y = x, y p_s = (1.0 - self.c_p)*p_s + self.c_p is_better = True else: p_s *= 1.0 - self.c_p is_better = False self.sigma *= np.exp(self.lr_sigma*(p_s - self.p_ts)/(1.0 - self.p_ts)) if p_s >= self.p_t: p_c *= 1.0 - self.c_c cf = self._cholesky_update(cf, self._c_cf, self.c_cov, p_c) elif is_better: p_c = (1.0 - self.c_c)*p_c + np.sqrt(self.c_c*(2.0 - self.c_c))*cf_z cf = self._cholesky_update(cf, 1.0 - self.c_cov, self.c_cov, p_c) elif len(self._ancestors) >= self.k and y > self._ancestors[-self.k]: del self._ancestors[0] c_m = np.minimum(self.c_m, 1.0/(2.0*np.dot(z, z) - 1.0)) cf = self._cholesky_update(cf, 1.0 + c_m, -c_m, cf_z) self._n_generations += 1 return mean, y, cf, best_so_far_y, p_s, p_c def restart_reinitialize(self, mean=None, y=None, cf=None, best_so_far_y=None, p_s=None, p_c=None, fitness=None, args=None): self._list_fitness.append(best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if self.is_restart and is_restart: self._print_verbose_info(fitness, y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.sigma = np.copy(self._sigma_bak) mean, y, cf, best_so_far_y, p_s, p_c = self.initialize(args, True) self._list_fitness = [best_so_far_y] self._ancestors = [] return mean, y, cf, best_so_far_y, p_s, p_c def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) mean, y, cf, best_so_far_y, p_s, p_c = self.initialize(args) while not self._check_terminations(): self._print_verbose_info(fitness, y) mean, y, cf, best_so_far_y, p_s, p_c = self.iterate( mean, cf, best_so_far_y, p_s, p_c, args) mean, y, cf, best_so_far_y, p_s, p_c = self.restart_reinitialize( mean, y, cf, best_so_far_y, p_s, p_c, fitness, args) return self._collect(fitness, y, mean)