Source code for pypop7.optimizers.es.r1es

import numpy as np

from pypop7.optimizers.es.es import ES


[docs]class R1ES(ES): """Rank-One Evolution Strategy (R1ES). .. note:: `R1ES` is a **low-rank** version of `CMA-ES` specifically designed for large-scale black-box optimization (LSBBO) by Li and `Zhang <https://tinyurl.com/32hsbx28>`_. It often works well when there is a *dominated* search direction embedded in a subspace. For more complex landscapes (e.g., there are multiple promising search directions), other LSBBO variants (e.g., `RMES`, `LMCMA`, `LMMAES`) of `CMA-ES` may be more preferred. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`), * 'c_cov' - learning rate of low-rank covariance matrix adaptation (`float`, default: `1.0/(3.0*np.sqrt(problem['ndim_problem']) + 5.0)`), * 'c' - learning rate of evolution path update (`float`, default: `2.0/(problem['ndim_problem'] + 7.0)`), * 'c_s' - learning rate of cumulative step-size adaptation (`float`, default: `0.3`), * 'q_star' - baseline of cumulative step-size adaptation (`float`, default: `0.3`), * 'd_sigma' - delay factor of cumulative step-size adaptation (`float`, default: `1.0`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.r1es import R1ES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> r1es = R1ES(problem, options) # initialize the optimizer class >>> results = r1es.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"R1ES: {results['n_function_evaluations']}, {results['best_so_far_y']}") R1ES: 5000, 8.942371004351231e-10 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/2aywpp2p>`_ for more details. Attributes ---------- c : `float` learning rate of evolution path update. c_cov : `float` learning rate of low-rank covariance matrix adaptation. c_s : `float` learning rate of cumulative step-size adaptation. d_sigma : `float` delay factor of cumulative step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. q_star : `float` baseline of cumulative step-size adaptation. sigma : `float` final global step-size, aka mutation strength. References ---------- Li, Z. and Zhang, Q., 2018. `A simple yet efficient evolution strategy for large-scale black-box optimization. <https://ieeexplore.ieee.org/abstract/document/8080257>`_ IEEE Transactions on Evolutionary Computation, 22(5), pp.637-646. """ def __init__(self, problem, options): ES.__init__(self, problem, options) self.c_cov = options.get('c_cov', 1.0/(3.0*np.sqrt(self.ndim_problem) + 5.0)) self.c = options.get('c', 2.0/(self.ndim_problem + 7.0)) self.c_s = options.get('c_s', 0.3) self.q_star = options.get('q_star', 0.3) self.d_sigma = options.get('d_sigma', 1.0) self._x_1 = np.sqrt(1.0 - self.c_cov) self._x_2 = np.sqrt(self.c_cov) self._p_1 = 1.0 - self.c self._p_2 = None self._rr = None # for rank-based success rule (RSR) def initialize(self, args=None, is_restart=False): self._p_2 = np.sqrt(self.c*(2.0 - self.c)*self._mu_eff) self._rr = np.arange(self.n_parents*2) + 1 # for rank-based success rule (RSR) x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution p = np.zeros((self.ndim_problem,)) # principal search direction s = 0.0 # cumulative rank rate y = np.tile(self._evaluate_fitness(mean, args), (self.n_individuals,)) # fitness return x, mean, p, s, y def iterate(self, x=None, mean=None, p=None, y=None, args=None): for k in range(self.n_individuals): if self._check_terminations(): return x, y z = self.rng_optimization.standard_normal((self.ndim_problem,)) r = self.rng_optimization.standard_normal() x[k] = mean + self.sigma*(self._x_1*z + self._x_2*r*p) y[k] = self._evaluate_fitness(x[k], args) return x, y def _update_distribution(self, x=None, mean=None, p=None, s=None, y=None, y_bak=None): order = np.argsort(y)[:self.n_parents] y.sort() mean_bak = np.dot(self._w[:self.n_parents], x[order]) p = self._p_1*p + self._p_2*(mean_bak - mean)/self.sigma r = np.argsort(np.hstack((y_bak[:self.n_parents], y[:self.n_parents]))) rr = self._rr[r < self.n_parents] - self._rr[r >= self.n_parents] q = np.dot(self._w, rr)/self.n_parents s = (1.0 - self.c_s)*s + self.c_s*(q - self.q_star) self.sigma *= np.exp(s/self.d_sigma) return mean_bak, p, s def restart_reinitialize(self, args=None, x=None, mean=None, p=None, s=None, y=None, fitness=None): if self.is_restart and ES.restart_reinitialize(self, y): x, mean, p, s, y = self.initialize(args, True) self._print_verbose_info(fitness, y[0]) self.d_sigma *= 2.0 return x, mean, p, s, y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, p, s, y = self.initialize(args) self._print_verbose_info(fitness, y[0]) while not self.termination_signal: y_bak = np.copy(y) # sample and evaluate offspring population x, y = self.iterate(x, mean, p, y, args) self._n_generations += 1 self._print_verbose_info(fitness, y) if self._check_terminations(): break mean, p, s = self._update_distribution(x, mean, p, s, y, y_bak) x, mean, p, s, y = self.restart_reinitialize(args, x, mean, p, s, y, fitness) results = self._collect(fitness, y, mean) results['p'] = p results['s'] = s return results