Source code for pypop7.optimizers.es.res

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES  # abstract class of all evolution strategies (ES)


[docs]class RES(ES): """Rechenberg's (1+1)-Evolution Strategy with 1/5th success rule (RES). .. note:: `RES` is the first evolution strategy with self-adaptation of the *global* step-size (designed by Rechenberg, one recipient of `IEEE Evolutionary Computation Pioneer Award 2002 <https://tinyurl.com/456as566>`_). As theoretically investigated in his *seminal* Ph.D. dissertation at Technical University of Berlin, the existence of narrow **evolution window** explains the necessarity of *global* step-size adaptation to maximize the local convergence progress, if possible. Note that a similar theoretical study was independently conducted in the automatic control community (that is, `[Schumer&Steiglitz, 1968, IEEE-TAC] <https://ieeexplore.ieee.org/abstract/document/1098903>`_). Since there is only one parent and only one offspring for each generation (iteration), `RES` generally shows limited *exploration* ability for large-scale black-box optimization. Therefore, it is recommended to first attempt more advanced ES variants (e.g., `LMCMA`, `LMMAES`) for large-scale black-box optimization. Here we include `RES` (AKA two-membered ES) mainly for *benchmarking* and *theoretical* purposes. Interestingly, owing to its popularity, sometimes `RES` is still used now, such as, `[Williams&Li, 2024, NeurIPS] <https://tinyurl.com/4vdphufe>`_. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * If not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'lr_sigma' - learning rate of global step-size self-adaptation (`float`, default: `1.0/np.sqrt(problem['ndim_problem'] + 1.0)`). Examples -------- Use the black-box optimizer `RES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.res import RES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 3.0} # global step-size may need to be tuned for optimality >>> res = RES(problem, options) # to initialize the black-box optimizer class >>> results = res.optimize() # to run its optimization/evolution process >>> # to return the used number of function evaluations and the found best-so-far fitness >>> print(f"RES: {results['n_function_evaluations']}, {results['best_so_far_y']}") RES: 5000, 0.00011689296624022443 For its correctness checking of Python-based coding, refer to `this code-based repeatability report <https://tinyurl.com/5n6ndrn7>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. lr_sigma : `float` learning rate of global step-size self-adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. sigma : `float` final global step-size, aka mutation strength (updated during optimization). References ---------- Auger, A., Hansen, N., López-Ibáñez, M. and Rudolph, G., 2022. `Tributes to Ingo Rechenberg (1934--2021). <https://dl.acm.org/doi/10.1145/3511282.3511283>`_ ACM SIGEVOlution, 14(4), pp.1-4. Agapie, A., Solomon, O. and Giuclea, M., 2021. `Theory of (1+1) ES on the RIDGE. <https://ieeexplore.ieee.org/abstract/document/9531957>`_ IEEE Transactions on Evolutionary Computation, 26(3), pp.501-511. Hansen, N., Arnold, D.V. and Auger, A., 2015. `Evolution strategies. <https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44>`_ In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J. and Koumoutsakos, P., 2004. `Learning probability distributions in continuous evolutionary algorithms–a comparative review. <https://link.springer.com/article/10.1023/B:NACO.0000023416.59689.4e>`_ Natural Computing, 3, pp.77-112. Beyer, H.G. and Schwefel, H.P., 2002. `Evolution strategies–A comprehensive introduction. <https://link.springer.com/article/10.1023/A:1015059928466>`_ Natural Computing, 1(1), pp.3-52. Rechenberg, I., 2000. `Case studies in evolutionary experimentation and computation. <https://www.sciencedirect.com/science/article/pii/S0045782599003813>`_ Computer Methods in Applied Mechanics and Engineering, 186(2-4), pp.125-140. Rechenberg, I., 1989. `Evolution strategy: Nature’s way of optimization. <https://link.springer.com/chapter/10.1007/978-3-642-83814-9_6>`_ In Optimization: Methods and Applications, Possibilities and Limitations (pp. 106-126). Springer, Berlin, Heidelberg. Rechenberg, I., 1984. `The evolution strategy. A mathematical model of Darwinian evolution. <https://link.springer.com/chapter/10.1007/978-3-642-69540-7_13>`_ In Synergetics—from Microscopic to Macroscopic Order (pp. 122-132). Springer, Berlin, Heidelberg. Schumer, M.A. and `Steiglitz, K. <https://www.cs.princeton.edu/~ken/>`_, 1968. `Adaptive step size random search. <https://ieeexplore.ieee.org/abstract/document/1098903>`_ IEEE Transactions on Automatic Control, 13(3), pp.270-276. """ def __init__(self, problem, options): options['n_parents'] = 1 # mandatory setting options['n_individuals'] = 1 # mandatory setting ES.__init__(self, problem, options) if self.lr_sigma is None: self.lr_sigma = 1.0/np.sqrt(self.ndim_problem + 1.0) assert self.lr_sigma > 0, f'`self.lr_sigma` = {self.lr_sigma}, but should > 0.' def initialize(self, args=None, is_restart=False): mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution y = self._evaluate_fitness(mean, args) # fitness best_so_far_y = np.copy(y) self._list_initial_mean.append(np.copy(mean)) return mean, y, best_so_far_y def iterate(self, args=None, mean=None): # to sample and evaluate only one offspring x = mean + self.sigma*self.rng_optimization.standard_normal((self.ndim_problem,)) y = self._evaluate_fitness(x, args) return x, y def restart_reinitialize(self, args=None, mean=None, y=None, best_so_far_y=None, fitness=None): if not self.is_restart: return mean, y, best_so_far_y self._list_fitness.append(best_so_far_y) is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False if len(self._list_fitness) >= self.stagnation: is_restart_2 = (self._list_fitness[-self.stagnation] - self._list_fitness[-1]) < self.fitness_diff is_restart = bool(is_restart_1) or bool(is_restart_2) if is_restart: self._print_verbose_info(fitness, y, True) if self.verbose: print(' ....... *** restart *** .......') self._n_restart += 1 self._list_generations.append(self._n_generations) # for each restart self._n_generations = 0 self.sigma = np.copy(self._sigma_bak) mean, y, best_so_far_y = self.initialize(args, True) self._list_fitness = [best_so_far_y] return mean, y, best_so_far_y def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) mean, y, best_so_far_y = self.initialize(args) while not self.termination_signal: self._print_verbose_info(fitness, y) x, y = self.iterate(args, mean) self._n_generations += 1 if self._check_terminations(): break self.sigma *= np.power(np.exp(float(y < best_so_far_y) - 0.2), self.lr_sigma) if y <= best_so_far_y: mean, best_so_far_y = x, y mean, y, best_so_far_y = self.restart_reinitialize(args, mean, y, best_so_far_y, fitness) return self._collect(fitness, y, mean)