Source code for pypop7.optimizers.es.samaes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.es.es import ES
from pypop7.optimizers.es.saes import SAES


[docs]class SAMAES(SAES): """Self-Adaptation Matrix Adaptation Evolution Strategy (SAMAES). .. note:: It is recommended to first attempt more advanced ES variants (e.g. `LMCMA`, `LMMAES`) for large-scale black-box optimization. Here we include it mainly for *benchmarking* and *theoretical* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`), * 'lr_sigma' - learning rate of global step-size adaptation (`float`, default: `1.0/np.sqrt(2*problem['ndim_problem'])`). * 'lr_matrix' - learning rate of matrix adaptation (`float`, default: `1.0/(2.0 + ((problem['ndim_problem'] + 1.0)*problem['ndim_problem'])/options['n_parents'])`). Examples -------- Use the black-box optimizer `SAMAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.samaes import SAMAES >>> problem = {'fitness_function': rosenbrock, # to define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # to set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 3.0} # global step-size may need to be tuned >>> samaes = SAMAES(problem, options) # to initialize the optimizer class >>> results = samaes.optimize() # to run the optimization/evolution process >>> # to return the number of function evaluations and the best-so-far fitness >>> print(f"SAMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") SAMAES: 5000, 3.002228687821483e-18 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/56k42a2n>`_ for more details. Attributes ---------- best_so_far_x : `array_like` final best-so-far solution found during entire optimization. best_so_far_y : `array_like` final best-so-far fitness found during entire optimization. lr_sigma : `float` learning rate of global step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength (changed during optimization). lr_matrix : `float` learning rate of matrix adaptation. References ---------- `Beyer, H.G. <https://homepages.fhv.at/hgb/>`_, 2020, July. `Design principles for matrix adaptation evolution strategies. <https://dl.acm.org/doi/abs/10.1145/3377929.3389870>`_ In Proceedings of ACM Conference on Genetic and Evolutionary Computation Companion (pp. 682-700). ACM. """ def __init__(self, problem, options): SAES.__init__(self, problem, options) if self.lr_sigma is None: self.lr_sigma = 1.0/np.sqrt(2.0*self.ndim_problem) self.lr_matrix = 1.0/(2.0 + ((self.ndim_problem + 1.0)*self.ndim_problem)/self.n_parents) self._eye = np.eye(self.ndim_problem) # for matrix adaptation def initialize(self, is_restart=False): x, mean, sigmas, y = SAES.initialize(self, is_restart) m = np.eye(self.ndim_problem) # for matrix adaptation return x, mean, sigmas, y, m def iterate(self, x=None, mean=None, sigmas=None, y=None, m=None, args=None): z = np.empty((self.n_individuals, self.ndim_problem)) d = np.empty((self.n_individuals, self.ndim_problem)) for k in range(self.n_individuals): # to sample offspring population if self._check_terminations(): return x, sigmas, y, m, z, d sigmas[k] = self.sigma*np.exp(self.lr_sigma*self.rng_optimization.standard_normal()) z[k] = self.rng_optimization.standard_normal((self.ndim_problem,)) d[k] = np.matmul(m, z[k]) x[k] = mean + sigmas[k]*d[k] y[k] = self._evaluate_fitness(x[k], args) return x, sigmas, y, m, z, d def restart_initialize(self, x=None, mean=None, sigmas=None, y=None, m=None): if self.is_restart and self._restart_initialize(y): x, mean, sigmas, y, m = self.initialize(True) return x, mean, sigmas, y, m def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = ES.optimize(self, fitness_function) x, mean, sigmas, y, m = self.initialize() while True: # sample and evaluate offspring population x, sigmas, y, m, z, d = self.iterate(x, mean, sigmas, y, m, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) self._n_generations += 1 order = np.argsort(y)[:self.n_parents] mean = np.mean(x[order], axis=0) # intermediate multi-recombination self.sigma = np.mean(sigmas[order]) # intermediate multi-recombination # use the following code (fast version) owing to its quadratic time complexity dz = np.zeros((self.ndim_problem, self.ndim_problem)) # for matrix adaptation for i in range(self.n_parents): dz += np.outer(d[order[i]], z[order[i]]) m = (1.0 - self.lr_matrix)*m + self.lr_matrix*(dz/self.n_parents) x, mean, sigmas, y, m = self.restart_initialize(x, mean, sigmas, y, m) return self._collect(fitness, y, mean)