Source code for pypop7.optimizers.nes.enes

import numpy as np  # engine for numerical computing

from pypop7.optimizers.nes.ones import ONES


def _combine_block(ll):
    ll = [list(map(np.mat, row)) for row in ll]
    h = [m.shape[1] for m in ll[0]]
    v, v_i = [row[0].shape[0] for row in ll], 0
    mat = np.zeros((sum(h), sum(v)))
    for i, row in enumerate(ll):
        h_i = 0
        for j, m in enumerate(row):
            mat[v_i:v_i + v[i], h_i:h_i + h[j]] = m
            h_i += h[j]
        v_i += v[i]
    return mat


[docs]class ENES(ONES): """Exact Natural Evolution Strategy (ENES). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring/descendants, aka offspring population size (`int`), * 'n_parents' - number of parents/ancestors, aka parental population size (`int`), * 'mean' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'lr_mean' - learning rate of distribution mean update (`float`, default: `1.0`), * 'lr_sigma' - learning rate of global step-size adaptation (`float`, default: `1.0`). Examples -------- Use the optimizer `ENES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.nes.enes import ENES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> enes = ENES(problem, options) # initialize the optimizer class >>> results = enes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"ENES: {results['n_function_evaluations']}, {results['best_so_far_y']}") ENES: 5000, 0.00035668252927080496 Attributes ---------- lr_mean : `float` learning rate of distribution mean update. lr_sigma : `float` learning rate of global step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search/sampling/mutation distribution. n_individuals : `int` number of offspring/descendants, aka offspring population size. n_parents : `int` number of parents/ancestors, aka parental population size. sigma : `float` global step-size, aka mutation strength (i.e., overall std of Gaussian search distribution). References ---------- Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J., 2014. Natural evolution strategies. Journal of Machine Learning Research, 15(1), pp.949-980. https://jmlr.org/papers/v15/wierstra14a.html Schaul, T., 2011. Studies in continuous black-box optimization. Doctoral Dissertation, Technische Universität München. https://people.idsia.ch/~schaul/publications/thesis.pdf Yi, S., Wierstra, D., Schaul, T. and Schmidhuber, J., 2009, June. Stochastic search using the natural gradient. In International Conference on Machine Learning (pp. 1161-1168). ACM. https://dl.acm.org/doi/abs/10.1145/1553374.1553522 See the official Python source code from PyBrain: https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/nes.py """ def __init__(self, problem, options): ONES.__init__(self, problem, options) if options.get('lr_mean') is None: self.lr_mean = 1.0 if options.get('lr_sigma') is None: self.lr_sigma = 1.0 def _update_distribution(self, x=None, y=None, mean=None, cv=None): order = np.argsort(-y) u = np.empty((self.n_individuals,)) for i, o in enumerate(order): u[o] = self._u[i] inv_d, inv_cv = np.linalg.inv(self._d_cv), np.linalg.inv(cv) dd = np.diag(np.diag(inv_d)) v = np.zeros((self._n_distribution, self.n_individuals)) for k in range(self.n_individuals): diff = x[k] - mean s = np.dot(inv_d.T, diff) v[:self.ndim_problem, k] += diff v[self.ndim_problem:, k] += self._triu2flat(np.outer(s, np.dot(inv_d, s)) - dd) j = self._n_distribution - 1 g = 1.0/(inv_cv[-1, -1] + np.square(inv_d[-1, -1])) d = 1.0/inv_cv[-1, -1] v[j, :] = np.dot(g, v[j, :]) j -= 1 for k in reversed(list(range(self.ndim_problem - 1))): w = inv_cv[k, k] w_g = w + np.square(inv_d[k, k]) q = np.dot(d, inv_cv[k + 1:, k]) c = np.dot(inv_cv[k + 1:, k], q) r, r_g = 1.0/(w - c), 1.0/(w_g - c) t, t_g = -(1.0 + r*c)/w, -(1.0 + r_g*c)/w_g g = _combine_block([[r_g, t_g*q], [np.mat(t_g*q).T, d + r_g*np.outer(q, q)]]) d = _combine_block([[r, t*q], [np.mat(t*q).T, d + r*np.outer(q, q)]]) v[j - (self.ndim_problem - k - 1):j + 1, :] = np.dot(g, v[j - (self.ndim_problem - k - 1):j + 1, :]) j -= self.ndim_problem - k grad, v_2 = np.zeros((self._n_distribution,)), v*v j = self._n_distribution - 1 for k in reversed(list(range(self.ndim_problem))): base = np.sum(v_2[j - (self.ndim_problem - k - 1):j + 1, :], 0) grad[j - (self.ndim_problem - k - 1):j + 1] = np.dot( v[j - (self.ndim_problem - k - 1):j + 1, :], u - np.dot(base, u)/np.sum(base)) j -= self.ndim_problem - k base = np.sum(v_2[:j + 1, :], 0) grad[:j + 1] = np.dot(v[:j + 1, :], (u - np.dot(base, u)/np.sum(base))) grad /= self.n_individuals mean += self.lr_mean*grad[:self.ndim_problem] self._d_cv += self.lr_sigma*self._flat2triu(grad[self.ndim_problem:]) cv = np.dot(self._d_cv.T, self._d_cv) return x, y, mean, cv