Source code for pypop7.optimizers.nes.sges

import numpy as np  # engine for numerical computing

from pypop7.optimizers.nes.nes import NES


[docs]class SGES(NES): """Search Gradient-based Evolution Strategy (SGES). .. note:: Here we include it **only** for *theoretical* and/or *educational* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring/descendants, aka offspring population size (`int`), * 'n_parents' - number of parents/ancestors, aka parental population size (`int`), * 'mean' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'lr_mean' - learning rate of distribution mean update (`float`, default: `0.01`), * 'lr_sigma' - learning rate of global step-size adaptation (`float`, default: `0.01`). Examples -------- Use the optimizer `SGES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy # engine for numerical computing >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.nes.sges import SGES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> sges = SGES(problem, options) # initialize the optimizer class >>> results = sges.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"SGES: {results['n_function_evaluations']}, {results['best_so_far_y']}") SGES: 5000, 0.01906602832229609 Attributes ---------- lr_mean : `float` learning rate of distribution mean update. lr_sigma : `float` learning rate of global step-size adaptation. mean : `array_like` initial (starting) point, aka mean of Gaussian search/sampling/mutation distribution. n_individuals : `int` number of offspring/descendants, aka offspring population size. n_parents : `int` number of parents/ancestors, aka parental population size. sigma : `float` global step-size, aka mutation strength (i.e., overall std of Gaussian search distribution). References ---------- Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J., 2014. Natural evolution strategies. Journal of Machine Learning Research, 15(1), pp.949-980. https://jmlr.org/papers/v15/wierstra14a.html Schaul, T., 2011. Studies in continuous black-box optimization. Doctoral Dissertation, Technische Universität München. https://people.idsia.ch/~schaul/publications/thesis.pdf See the official Python source code from PyBrain: https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/ves.py """ def __init__(self, problem, options): options['n_individuals'] = options.get('n_individuals', 100) options['sigma'] = np.Inf # not used for `SGES` NES.__init__(self, problem, options) if self.lr_mean is None: self.lr_mean = 0.01 assert self.lr_mean > 0.0, f'`self.lr_mean` = {self.lr_mean}, but should > 0.0.' if self.lr_sigma is None: self.lr_sigma = 0.01 assert self.lr_sigma > 0.0, f'`self.lr_sigma` = {self.lr_sigma}, but should > 0.0.' self._n_distribution = int(self.ndim_problem + self.ndim_problem*(self.ndim_problem+1)/2) self._d_cv = None def initialize(self, is_restart=False): NES.initialize(self) x = np.empty((self.n_individuals, self.ndim_problem)) # offspring population y = np.empty((self.n_individuals,)) # fitness (no evaluation) mean = self._initialize_mean(is_restart) # mean of Gaussian search distribution cv = np.eye(self.ndim_problem) # covariance matrix of Gaussian search distribution self._d_cv = np.eye(self.ndim_problem) return x, y, mean, cv def iterate(self, x=None, y=None, mean=None, args=None): for k in range(self.n_individuals): if self._check_terminations(): return x, y x[k] = mean + np.dot(self._d_cv.T, self.rng_optimization.standard_normal((self.ndim_problem,))) y[k] = self._evaluate_fitness(x[k], args) return x, y def _triu2flat(self, cv): g = np.zeros((int(self.ndim_problem*(self.ndim_problem+1)/2),)) s, e = 0, self.ndim_problem for r in range(self.ndim_problem): g[s:e] = cv[r, r:] s = e e += (self.ndim_problem - (r + 1)) return g def _flat2triu(self, g): cv = np.zeros((self.ndim_problem, self.ndim_problem)) s, e = 0, self.ndim_problem for r in range(self.ndim_problem): cv[r, r:] = g[s:e] s = e e += (self.ndim_problem - (r + 1)) return cv def _update_distribution(self, x=None, y=None, mean=None, cv=None): order = np.argsort(-y) u = np.empty((self.n_individuals,)) for i, o in enumerate(order): u[o] = self._u[i] inv_cv = np.linalg.inv(cv) phi = np.zeros((self.n_individuals, self._n_distribution)) phi[:, :self.ndim_problem] = np.dot(inv_cv, (x - mean).T).T grad_cv = np.empty((self.n_individuals, int(self.ndim_problem*(self.ndim_problem + 1)/2))) for k in range(self.n_individuals): diff = x[k] - mean _grad_cv = 0.5*(np.dot(np.dot(inv_cv, np.outer(diff, diff)), inv_cv) - inv_cv) grad_cv[k] = self._triu2flat(np.dot(self._d_cv, (_grad_cv + _grad_cv.T))) phi[:, self.ndim_problem:] = grad_cv phi_square = phi*phi grad = np.sum(phi*(np.outer(u, np.ones((self._n_distribution,))) - np.dot( u, phi_square)/np.dot(np.ones((self.n_individuals,)), phi_square)), 0) mean += self.lr_mean*grad[:self.ndim_problem] self._d_cv += self.lr_sigma*self._flat2triu(grad[self.ndim_problem:]) cv = np.dot(self._d_cv.T, self._d_cv) return mean, cv def restart_reinitialize(self, x=None, y=None, mean=None, cv=None): if self.is_restart and NES.restart_reinitialize(self, y): x, y, mean, cv = self.initialize(True) return x, y, mean, cv def optimize(self, fitness_function=None, args=None): # for all generations (iterations) fitness = NES.optimize(self, fitness_function) x, y, mean, cv = self.initialize() while True: x, y = self.iterate(x, y, mean, args) if self._check_terminations(): break self._print_verbose_info(fitness, y) mean, cv = self._update_distribution(x, y, mean, cv) self._n_generations += 1 x, y, mean, cv = self.restart_reinitialize(x, y, mean, cv) return self._collect(fitness, y, mean)