Source code for pypop7.optimizers.pso.ipso

import numpy as np

from pypop7.optimizers.core.optimizer import Optimizer
from pypop7.optimizers.pso.pso import PSO


[docs]class IPSO(PSO): """Incremental Particle Swarm Optimizer (IPSO). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - swarm (population) size, aka number of particles (`int`, default: `20`), * 'constriction' - constriction factor (`float`, default: `0.729`), * 'cognition' - cognitive learning rate (`float`, default: `2.05`), * 'society' - social learning rate (`float`, default: `2.05`), * 'max_ratio_v' - maximal ratio of velocities w.r.t. search range (`float`, default: `0.5`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.pso.ipso import IPSO >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> ipso = IPSO(problem, options) # initialize the optimizer class >>> results = ipso.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"IPSO: {results['n_function_evaluations']}, {results['best_so_far_y']}") IPSO: 5000, 2.29225104244031e-07 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/4pk3ssrf>`_ for more details. Attributes ---------- cognition : `float` cognitive learning rate, aka acceleration coefficient. constriction : `float` constriction factor. max_ratio_v : `float` maximal ratio of velocities w.r.t. search range. n_individuals : `int` swarm (population) size, aka number of particles. society : `float` social learning rate, aka acceleration coefficient. References ---------- De Oca, M.A.M., Stutzle, T., Van den Enden, K. and Dorigo, M., 2011. Incremental social learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(2), pp.368-384. https://ieeexplore.ieee.org/document/5582312 """ def __init__(self, problem, options): PSO.__init__(self, problem, options) self.n_individuals = 1 # minimum of swarm size self.max_n_individuals = options.get('max_n_individuals', 1000) # maximum of swarm size assert self.max_n_individuals > 0 self.cognition = options.get('cognition', 2.05) # cognitive learning rate assert self.cognition > 0.0 self.society = options.get('society', 2.05) # social learning rate assert self.society > 0.0 self.constriction = options.get('constriction', 0.729) # constriction factor assert self.constriction > 0.0 self.max_ratio_v = options.get('max_ratio_v', 0.5) # maximal ratio of velocity assert 0.0 <= self.max_ratio_v <= 1.0 def initialize(self, args=None): v = np.zeros((self.n_individuals, self.ndim_problem)) # velocities x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary, size=self._swarm_shape) # positions y = np.empty((self.n_individuals,)) # fitness p_x, p_y = np.copy(x), np.copy(y) # personally previous-best positions and fitness for i in range(self.n_individuals): if self._check_terminations(): return v, x, y, p_x, p_y y[i] = self._evaluate_fitness(x[i], args) p_y = np.copy(y) return v, x, y, p_x, p_y def iterate(self, v=None, x=None, y=None, p_x=None, p_y=None, args=None, fitness=None): for i in range(self.n_individuals): # horizontal social learning if self._check_terminations(): return v, x, y, p_x, p_y cognition_rand = self.rng_optimization.uniform(size=(self.ndim_problem,)) society_rand = self.rng_optimization.uniform(size=(self.ndim_problem,)) v[i] = self.constriction*(v[i] + self.cognition*cognition_rand*(p_x[i] - x[i]) + self.society*society_rand*(p_x[np.argmin(p_y)] - x[i])) # velocity update v[i] = np.clip(v[i], self._min_v, self._max_v) x[i] += v[i] # position update x[i] = np.clip(x[i], self.lower_boundary, self.upper_boundary) y[i] = self._evaluate_fitness(x[i], args) if y[i] < p_y[i]: # online update p_x[i], p_y[i] = x[i], y[i] if self.n_individuals < self.max_n_individuals: # population growth (vertical social learning) if self._check_terminations(): return v, x, y, p_x, p_y xx = self.rng_optimization.uniform(self.lower_boundary, self.upper_boundary) model = p_x[np.argmin(p_y)] # the best particle is used as model # use different random numbers of different dimensions for diversity (important), # which is *slightly different* from the original paper but often with better performance # xx += self.rng_optimization.uniform()*(model - xx) # from the original paper xx += self.rng_optimization.uniform(size=(self.ndim_problem,))*(model - xx) xx = np.clip(xx, self.lower_boundary, self.upper_boundary) yy = self._evaluate_fitness(xx, args) v = np.vstack((v, np.zeros((self.ndim_problem,)))) x, y = np.vstack((x, xx)), np.hstack((y, yy)) p_x, p_y = np.vstack((p_x, xx)), np.hstack((p_y, yy)) self.n_individuals += 1 self._n_generations += 1 return v, x, y, p_x, p_y def optimize(self, fitness_function=None, args=None): fitness = Optimizer.optimize(self, fitness_function) v, x, y, p_x, p_y = self.initialize(args) while not self.termination_signal: self._print_verbose_info(fitness, y) v, x, y, p_x, p_y = self.iterate(v, x, y, p_x, p_y, args) return self._collect(fitness, y)