Source code for pypop7.optimizers.rs.arhc

import numpy as np

from pypop7.optimizers.rs.rhc import RHC


[docs]class ARHC(RHC): """Annealed Random Hill Climber (ARHC). .. note:: The search performance of `ARHC` depends **heavily** on the *temperature* setting of the annealing process. However, its proper setting is a **non-trivial** task, since it may vary among different problems and even between different optimization stages for the problem at hand. Therefore, it is **highly recommended** to first attempt more advanced (e.g. population-based) methods for large-scale black-box optimization. Here we include it mainly for *benchmarking* purpose. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size (`float`), * 'temperature' - annealing temperature (`float`), * 'x' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`, when `init_distribution` is `1`. Otherwise, *standard normal* distributed random sampling is used. * 'init_distribution' - random sampling distribution for starting-point initialization (`int`, default: `1`). Only when `x` is not set *explicitly*, it will be used. * `1`: *uniform* distributed random sampling only for starting-point initialization, * `0`: *standard normal* distributed random sampling only for starting-point initialization. Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.rs.arhc import ARHC >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'x': 3*numpy.ones((2,)), ... 'sigma': 0.1, ... 'temperature': 1.5} >>> arhc = ARHC(problem, options) # initialize the optimizer class >>> results = arhc.optimize() # run the optimization process >>> # return the number of used function evaluations and found best-so-far fitness >>> print(f"ARHC: {results['n_function_evaluations']}, {results['best_so_far_y']}") ARHC: 5000, 0.0002641143073543329 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/2s3v8z7h>`_ for more details. Attributes ---------- init_distribution : `int` random sampling distribution for starting-point initialization. sigma : `float` global step-size (fixed during optimization). temperature : `float` annealing temperature. x : `array_like` initial (starting) point. References ---------- https://probml.github.io/pml-book/book2.html (See CHAPTER 6.7 Derivative-free optimization) Russell, S. and Norvig P., 2021. Artificial intelligence: A modern approach (Global Edition). Pearson Education. http://aima.cs.berkeley.edu/ (See CHAPTER 4: SEARCH IN COMPLEX ENVIRONMENTS) Hoos, H.H. and Stützle, T., 2004. Stochastic local search: Foundations and applications. Elsevier. https://www.elsevier.com/books/stochastic-local-search/hoos/978-1-55860-872-6 https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/hillclimber.py """ def __init__(self, problem, options): RHC.__init__(self, problem, options) self.temperature = options.get('temperature') # annealing temperature assert self.temperature is not None self._parent_x, self._parent_y = np.copy(self.best_so_far_x), np.copy(self.best_so_far_y) def iterate(self): # sampling via mutating the parent individual noise = self.rng_optimization.standard_normal(size=(self.ndim_problem,)) return self._parent_x + self.sigma*noise # mutation based on Gaussian-noise perturbation def _evaluate_fitness(self, x, args=None): y = RHC._evaluate_fitness(self, x, args) # update parent solution and fitness diff = y - self._parent_y if (diff < 0) or (self.rng_optimization.random() < np.exp(-diff/self.temperature)): # annealing self._parent_x, self._parent_y = np.copy(x), y return y