Source code for pypop7.optimizers.rs.prs

import numpy as np

from pypop7.optimizers.rs.rs import RS


[docs]class PRS(RS): """Pure Random Search (PRS). .. note:: `PRS` is one of the *simplest* and *earliest* black-box optimizers, dating back to at least `1950s <https://pubsonline.informs.org/doi/abs/10.1287/opre.6.2.244>`_. Although recently it has been successfully applied in several *relatively low-dimensional* problems (particularly `hyper-parameter optimization <https://www.jmlr.org/papers/v13/bergstra12a.html>`_), it generally suffers from the famous **curse of dimensionality** for large-scale black-box optimization, owing to the lack of *adaptation*, a highly desirable property for most sophisticated search algorithms. Therefore, it is **highly recommended** to first attempt more advanced (e.g. population-based) methods for large-scale black-box optimization. As pointed out in the well-recognized book `Probabilistic Machine Learning (written by Kevin Patrick Murphy) <https://probml.github.io/pml-book/book2.html>`_, *"A surprisingly effective strategy in problems where we know nothing about the objective is to use random search. This should always be tried as a baseline"*. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`). Examples -------- Use the `PRS` optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.rs.prs import PRS >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> prs = PRS(problem, options) # initialize the optimizer class >>> results = prs.optimize() # run the optimization process >>> # return the number of used function evaluations and found best-so-far fitness >>> print(f"PRS: {results['n_function_evaluations']}, {results['best_so_far_y']}") PRS: 5000, 0.11497678820610932 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/mrx2kffy>`_ for more details. References ---------- Bergstra, J. and `Bengio, Y. <https://yoshuabengio.org/>`_, 2012. `Random search for hyper-parameter optimization. <https://www.jmlr.org/papers/v13/bergstra12a.html>`_ Journal of Machine Learning Research, 13(10), pp.281-305. `Schmidhuber, J. <https://people.idsia.ch/~juergen/>`_, Hochreiter, S. and `Bengio, Y. <https://yoshuabengio.org/>`_, 2001. `Evaluating benchmark problems by random guessing. <https://ml.jku.at/publications/older/ch9.pdf>`_ A Field Guide to Dynamical Recurrent Networks, pp.231-235. Karnopp, D.C., 1963. `Random search techniques for optimization problems. <https://www.sciencedirect.com/science/article/abs/pii/0005109863900189>`_ Automatica, 1(2-3), pp.111-121. Brooks, S.H., 1959. `A comparison of maximum-seeking methods. <https://pubsonline.informs.org/doi/abs/10.1287/opre.7.4.430>`_ Operations Research, 7(4), pp.430-457. Brooks, S.H., 1958. `A discussion of random methods for seeking maxima. <https://pubsonline.informs.org/doi/abs/10.1287/opre.6.2.244>`_ Operations Research, 6(2), pp.244-251. """ def __init__(self, problem, options): RS.__init__(self, problem, options) # set default: 1 -> uniformly distributed random sampling self._sampling_type = options.get('_sampling_type', 1) if self._sampling_type not in [0, 1]: # 0 -> normally distributed random sampling info = 'For currently {:s}, only support uniformly or normally distributed random sampling.' raise ValueError(info.format(self.__class__.__name__)) elif self._sampling_type == 0: self.sigma = options.get('sigma') # initial global step-size (fixed during optimization) assert self.sigma is not None def _sample(self, rng): if self._sampling_type == 0: x = self.x + self.sigma*rng.standard_normal(size=(self.ndim_problem,)) else: x = rng.uniform(self.initial_lower_boundary, self.initial_upper_boundary) return x def initialize(self): if self.x is None: x = self._sample(self.rng_initialization) else: x = np.copy(self.x) assert len(x) == self.ndim_problem return x def iterate(self): # individual-based sampling return self._sample(self.rng_optimization)