Source code for pypop7.optimizers.rs.rhc

from pypop7.optimizers.rs.prs import PRS


[docs]class RHC(PRS): """Random (stochastic) Hill Climber (RHC). .. note:: Currently `RHC` only supports normally-distributed random sampling during optimization. It often suffers from **slow convergence** for large-scale black-box optimization (LSBBO), owing to its *relatively limited* exploration ability originating from its **individual-based** sampling strategy. Therefore, it is **highly recommended** to first attempt more advanced (e.g. population-based) methods for LSBBO. `"The hill-climbing search algorithm is the most basic local search technique. They have two key advantages: (1) they use very little memory; and (2) they can often find reasonable solutions in large or infinite state spaces for which systematic algorithms are unsuitable."---[Russell&Norvig, 2021] <http://aima.cs.berkeley.edu/>`_ AKA `"stochastic local search (steepest ascent or greedy search)"---[Murphy., 2022] <https://probml.github.io/pml-book/book2.html>`_. Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size (`float`), * 'x' - initial (starting) point (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`, when `init_distribution` is `1`. Otherwise, *standard normal* distributed random sampling is used. * 'init_distribution' - random sampling distribution for starting-point initialization (`int`, default: `1`). Only when `x` is not set *explicitly*, it will be used. * `1`: *uniform* distributed random sampling only for starting-point initialization, * `0`: *standard normal* distributed random sampling only for starting-point initialization. Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.rs.rhc import RHC >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'x': 3*numpy.ones((2,)), ... 'sigma': 0.1} >>> rhc = RHC(problem, options) # initialize the optimizer class >>> results = rhc.optimize() # run the optimization process >>> # return the number of used function evaluations and found best-so-far fitness >>> print(f"RHC: {results['n_function_evaluations']}, {results['best_so_far_y']}") RHC: 5000, 7.13722829962456e-05 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/3u864ju3>`_ for more details. Attributes ---------- init_distribution : `int` random sampling distribution for starting-point initialization. sigma : `float` global step-size (fixed during optimization). x : `array_like` initial (starting) point. References ---------- The following code from PyBrain directly inspired the coding of `RHC`: https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/hillclimber.py For the following book, Chapter 6.7 (DFO) gives an introduction of `RHC`: https://probml.github.io/pml-book/book2.html For the following book, Chapter 4 (SEARCH IN COMPLEX ENVIRONMENTS) gives an introduction of `RHC`: Russell, S. and Norvig P., 2021. `Artificial intelligence: A modern approach (Global Edition). <http://aima.cs.berkeley.edu/>`_ Pearson Education. Hoos, H.H. and Stützle, T., 2004. `Stochastic local search: Foundations and applications. <https://www.elsevier.com/books/stochastic-local-search/hoos/978-1-55860-872-6>`_ Elsevier. Baluja, S., 1996. `Genetic algorithms and explicit search statistics. <https://proceedings.neurips.cc/paper/1996/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html>`_ In Advances in Neural Information Processing Systems (pp.319-325). Juels, A. and Wattenberg, M., 1995. `Stochastic hillclimbing as a baseline method for evaluating genetic algorithms. <https://proceedings.neurips.cc/paper/1995/hash/36a1694bce9815b7e38a9dad05ad42e0-Abstract.html>`_ In Advances in Neural Information Processing Systems (pp. 430-436). """ def __init__(self, problem, options): # only support normally-distributed random sampling during optimization options['_sampling_type'] = 0 # 0 -> normally distributed random sampling (a mandatory setting) PRS.__init__(self, problem, options) # set default: 1 -> uniformly distributed random sampling self.init_distribution = options.get('init_distribution', 1) if self.init_distribution not in [0, 1]: # 0 -> normally distributed random sampling info = 'For currently {:s}, only support uniformly or normally distributed random initialization.' raise ValueError(info.format(self.__class__.__name__)) def _sample(self, rng): # only for function `initialize(self)` inherited from the parent class `PRS` if self.init_distribution == 0: # normally distributed x = rng.standard_normal(size=(self.ndim_problem,)) else: # uniformly distributed x = rng.uniform(self.initial_lower_boundary, self.initial_upper_boundary) return x def iterate(self): # sampling via mutating the best-so-far individual noise = self.rng_optimization.standard_normal(size=(self.ndim_problem,)) return self.best_so_far_x + self.sigma*noise # mutation based on Gaussian-noise perturbation