Latent Action Monte Carlo Tree Search (LAMCTS)
- class pypop7.optimizers.bo.lamcts.LAMCTS(problem, options)[source]
Latent Action Monte Carlo Tree Search (LAMCTS).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of individuals/samples (int, default: 100),
’c_e’ - factor to control exploration (float, default: 0.01),
’leaf_size’ - leaf size (int, default: 40).
Examples
Use the black-box optimizer LAMCTS to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.bo.lamcts import LAMCTS 4>>> problem = {'fitness_function': rosenbrock, # to define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5.0*numpy.ones((2,)), 7... 'upper_boundary': 5.0*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # to set optimizer options 9... 'seed_rng': 1} 10>>> lamcts = LAMCTS(problem, options) # to initialize the optimizer class 11>>> results = lamcts.optimize() # to run the optimization process 12>>> print(f"LAMCTS: {results['n_function_evaluations']}, {results['best_so_far_y']}") 13LAMCTS: 5000, 0.0001
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- c_e
factor to control exploration.
- Type:
float
- init_individuals
number of initial individuals.
- Type:
int
- leaf_size
leaf size.
- Type:
int
- n_individuals
number of individuals/samples.
- Type:
int
References
Wang, L., Fonseca, R. and Tian, Y., 2020. Learning search space partition for black-box optimization using monte carlo tree search. Advances in Neural Information Processing Systems, 33, pp.19511-19522. https://arxiv.org/abs/2007.00708 (an updated version) https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html (the original version)
https://github.com/facebookresearch/LA-MCTS (an updated version) https://github.com/facebookresearch/LaMCTS (the original version)